

地域の空間線量率と焼却ごみの放射能濃度の関係

放射性セシウムはアルカリ金属元素

[出所] フリー百科事典、ウィキペディア (Wikipedia):周期表 (2)、http://ja.wikipedia.org/ 財団法人 高度情報科学技術研究機構HPより 6/38

廃棄物を処理する際の放射性セシウム の挙動及び安全性の確保

放射性セシウムの特徴は?

- 放射線としてベータ線やガンマ線を放出
- 物質としては、ナトリウムやカリウムと同じアルカリ金属
- 食塩(塩化ナトリウム)と同様に、塩化セシウムの状態では 水に溶けやすい物質(他の化合物も水に溶けやすい)
- 土壌の粘土質に強く引き付けられ、いったん土壌にくっつくと、
 地下に浸透しにくい性質
- 外部被ばくで主になるガンマ線は、土壌やコンクリートで遮 へいすれば、放射性物質から出てくる放射線の多くを防ぐこ とができる。
 - 例えば、土壌の層30cmがあれば、放射線量を約40分の1にすることができる。

7/39

放射性物質を含む廃棄物の焼却処理 について

焼却処理における研究課題

焼却すると廃棄物中の放射性セシウムは どうなるか?

廃棄物の中の放射性セシウムは、 850℃以上の高温の炎の中で揮 発したり、小さな液滴となって 排ガスと一緒に流れていくもの と、燃え残りの灰に残るものに 分かれます。

排ガス中の揮発した放射性セシウムは どうなるか?

排ガスは冷やされて、気体状あるいは液状のセシウムは、主 に塩化セシウムと考えられる化合物として凝縮して固体状態 になり、他の物質と一緒に粒子化して、ばいじんになります。

排ガス中の塩化セシウム(CsCl)は、					
沸点(液体から揮発する温度)	1300°C				
融点(固体から液体になる温度)	646℃				

11

9

焼却過程における存在形態(平衡計算結果)

Kuramochi & Osako 4th EuCheMS, 2012 15

計算結果の妥当性(溶出試験結果との比較)

飛灰濃度が8,000Bg/kg超の施設における 排ガス処理設備でのCs除去率

排ガス中の存在形態は?

(CsClの飽和蒸気圧(Pvp)の推定結果)

燃焼温度

液体CsClの

P_{vp}実測值[†]

出典:

†:Fiock&Rodebush, 1926

ິ18/40

1:Scheer&Fine, 1962

*: Mackay et al., 2005

固体CsClのPun実測値は

Clausius-Clapeyron式の推定値

100 200 300 400 500 600 700 800 900 1000

温度 / ℃

(850°C)

バグフィルター温度付近 ←

150 °C 200 °C

1.0E+04

1.0E+00

1.0E-04

1.0E-08

1.0E-12

1.0E-16

・ダイオキシン類の飽和蒸気圧よりも9~12桁低い

・ダイオキシン類以上にバグフィルターで除去しやすい物質

ダイオキシン類

2.3.7.8-T4CDD**Ø***P*...:0.52 Pa*

 $O8CDD \mathcal{O}P_{y_0}$:7.15 × 10⁻³ Pa^{*}

 $CsCl\mathcal{O}P_{vn}: 2.75 \times 10^{-12} Pa$

Pa

 $P_{\rm vp}/$

施設 対象フロセス	対象プ	入口濃度(Bq/m ³)		出口濃度 (Bq/m ³)		除去率(%)		集塵	調査	調査
	ロセス	Cs134	Cs137	Cs134	Cs137	Cs134	Cs137	装置	実施者 問	時期
福島県 あらかわCC ^{焼却}	/持±0	78	96	<0.008	<0.006	99.99<	99.99<	BF	環境省	10月
	がエリ	98	126	0.008	<0.007	99.99	99.99<			12月
須賀川地方 保健環境組合 ^{焼却}	/持 土口	33	42	0.2	0.2	99.39	99.52	EP	環境省	10月
	까도지기	43	57	0.2	0.2	99.53	99.65			12月
A市清掃工場	焼却	58	70	<0.054	<0.053	99.91<	99.92<	BF	国環研	10月
B市清掃工場	焼却	58	76	<0.1	<0.1	99.83<	99.87<	BF	国環研	10日
	溶融	677	844	<0.1	<0.1	99.99<	99.99<			12 H
C市清掃工場,	焼却	15	20	<0.012	<0.013	99.92<	99.94<	BF 国環硕	2	2月
	焼却	64	85	<0.018	<0.017	99.97<	99.98<		国環研	3月
	溶融	39	51	<0.01	<0.011	99.97<	99.98<			2月
	溶融	98	133	<0.013	<0.013	99.99<	99.99<			3月
D市清掃工場	溶融	335	404	<0.4	<0.3	99.88<	99.93<	BF	A社	9月
	溶融24h 採取	220	330	<0.05	<0.07	99.98<	99.98<			3月

*BF:バグフィルター、EP: 電気集塵機

**濃度はろ紙部のみ、環境省調査は出口濃度は煙突出口、国環研調査はBF出口(但し、 煙突出ロガスは検出下限未満)

水奶理

原水槽

特措法における主な技術基準:

堰堤

23

浸出水 集排水管

土壤層

既存廃棄物

50cmの下部土壌吸着層、ばいじんに対しては最上部不透水層

焼却灰等の溶出性(溶出試験) JIS K 0058-1 - 有姿

- 200 rpmプロペラ撹拌
- 6時間溶出
- 液固比10
- 0.45umフィルタ濾過
- 試料 (一廃焼却施設より採取)
 - 一 主灰
 - 一 飛灰
 - 一 飛灰固化物
- 溶出濃度・含有量測定 - Ge検出器

タンク

溶媒

試料

25

放射性セシウムの溶出率

焼却灰主体埋立地からの浸出液を想定 した土壌等の吸着性の評価

- 溶媒
 - pH12飛灰溶出液 (2,100 mS/m, 760 Bg/L)
 - 塩酸調整 pH7飛灰溶出液 (1,920 mS/m, 780 Ba/L)
- 土壌と吸着材
 - 珪砂5号 - ベントナイト
 - 顆粒ゼオライト - 茨城真砂土
 - 埼玉十嬢 - 粉末ゼオライト

- 液固比 8-2,000
- 吸着時間1日
- 120 rpm 水平振とう

珪砂5号 CEC = 0.7 cmol/kg	茨城真砂土 CEC = 4.1 cmol/kg	粉末ゼオライト CEC = 130 cmol/kg
✔石英を主成とする標準砂 ✔0.4-0.6mmの均一粒径	✓花崗岩などが風化した土✓細粒分(<75um) = 7%	✔天然のゼオライト ✔0.2 mm 以下の粒径
埼玉土壌 CEC = 6.3 cmol/kg	ベントナイト CEC = 66 cmol/kg	顆粒ゼオライト CEC = 140 cmol/kg
 ✓実覆土に用いられた土 ✓細粒分(<75um) = 20% 	✓ワイオミング産Naベントナイト✓難透水性材料として利用	✔天然のゼオライト ✔1.4-4.0mmの粒径

吸着による遅延効果と浸出水放射能濃度の低減

[※] この試算は、覆土内を半ば強制的に通水させたときのトラベル/4/である。吸着に よる遅延を期待する場合には、水を吸着材に浸透させる工夫が必要になる。

埋立層内放射性Cs挙動シミュレーション

埋立処分場の浸出水の監視 ~濃度限度は排出ロ基準ではなく、周辺環境における基準~

134Csの濃度(Bq/L)/60(Bq/L)+137Csの濃度(Bq/L)/90(Bq/L)≦1

おわりに

▶地域のリスク低減のためには除染措置が必要である。

▶除染を行えば汚染廃棄物や除去土壌が生じるため、その適正処理が必要。

▶除染と廃棄物処理を一体的に捉え、安全と 信頼が確保された適正処理により、除染を円 滑に推進することが重要