GHG emissions from Agriculture Soils in India

Chhemendra Sharma

National Physical Laboratory

New Delhi, India

India's Initial National Communication for the Base Year 1994: Emissions from Agriculture Sector (Gg)

GHG source and sink categories (Gg per year)	CO ₂ emissions	CO ₂ removals	СН₄	N ₂ O	CO₂eq. emissions*
Total (Net) National Emission	817023	23533	18083	178	1228540
3. Agriculture			14175	151	344485
Enteric Fermentation			8972		188412
Manure Management			946	1	20176
Rice Cultivation			4090		85890
Agricultural crop residue			167	4	4747
Emission from Soils				146	45260

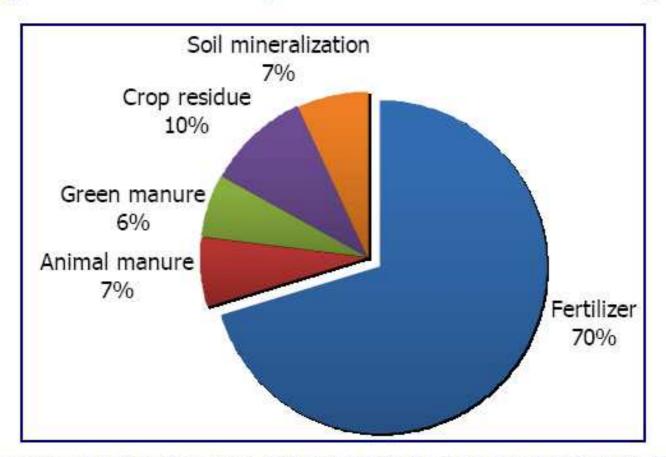
Source: India's Initial National Communication to UNFCCC

GHG Emissions from Agriculture Sector in India in 2007 (Gg)

	CH ₄	N ₂ O	CO₂ eq.
	13767.80	146.07	334405.50
Enteric fermentation	10099.80		212095.80
Manure management	115.00	0.07	2436.70
Rice cultivation	3327.00		69867.00
Soils			43400.00
Crop residue	226.00	6.00	6606.00

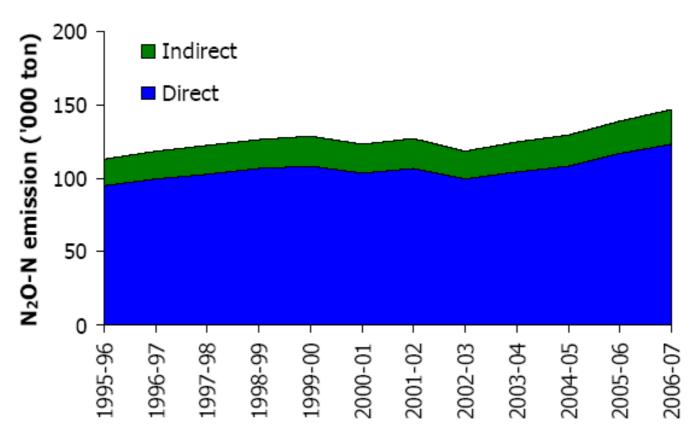
Source - India: Greenhouse Gas Emissions 2007, Report of Indian Network for Climate Change Assessment (INCAA)

WGIA8, 13-16 July 2010, Vientiane, Lao PDR

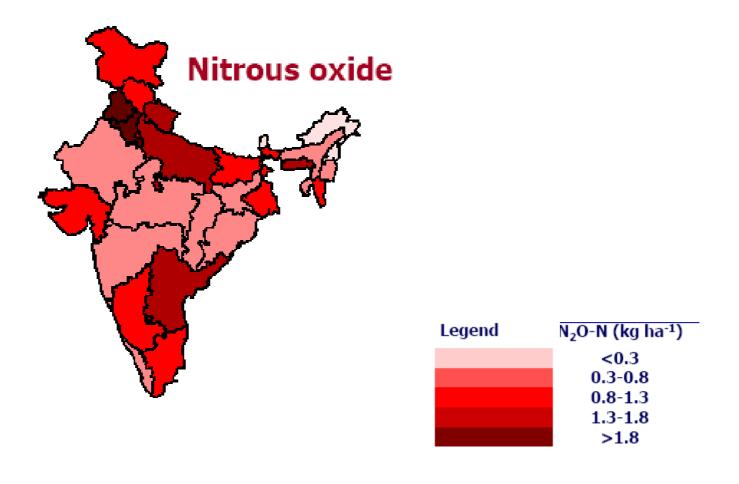

Emission Factors

1994 Estimation – 0.93 kg/ha N₂O-N

- 2007 Estimation Country specific emission factors
 - rice-wheat system
 - 0.76 kg ha⁻¹ N₂O-N for rice
 - 0.66 kg ha⁻¹ N₂O-N for wheat


» for urea application without inhibitors

Emission of N₂O-N from different sources in agricultural soils (Total emission 0.14 Mt)


Data source: Majumdar et al. (2000), Pathak et al. (2002; 2004), Bhatia et al. (2005), Malla et al. (2005), Jain et al. (2009)

Nitrous oxide emission from agricultural soils during 1995-2007

Source: Pathak et. al. 2010

Nitrous oxide emissions from agricultural soils in different states of India in 2007

WGIA8, 13-16 July 2010, Vientiane, Lao PDR

Source: Pathak et. al. 2010

Methodology Used in 2007 Estimation

- IPCC 2006 methodology followed
- Activity data for 1995 to 2007 compiled
- Emission coefficients developed and updated for different crops, crop residues and soils
- Uncertainty estimated (3-40%)

Source: Pathak et. al. 2010

Ongoing Work...

 Efforts to reduce uncertainties by developing country specific emission factors

- For different agro-ecosystems
- Covering fallow periods

Thanks