N₂O EMISSION FROM AGRICULTURE SOILS IN THAILAND

Amnat Chidthaisong

The Joint Graduate School of Energy and Environment, King Mongkut's University of Technology Thonburi (KMUTT) amnat_c@jgsee.kmutt.ac.th

DECISION TREE: Direct N₂O emission from Agricultural Soils

AGRICULTURAL SOILS

- N inputs (origin of direct N₂O emissions):
 - $\sqrt{}$ application of synthetic fertilizers (FSN)
 - $\sqrt{}$ application of animal manure (FAM)
 - 🗸 🛯 Grazing animal
- **×** cultivation of nitrogen-fixing crops (FBN)
- $\sqrt{}$ incorporation of crop residues into soils (FCR)
- soil N mineralization due to cultivation of organic soils (FOS)
- **X** other sources, such as sewage sludge

DECISION TREE: Indirect N₂O emission from Agricultural Soils

UNFCCC

National total including LULUCF = 229.09 Mt CO2 eq

EMISSION IN 2000 FROM 'AGRICULTURE' (MT CO₂ EQ,%)

Emission in 2000 by 'Agriculture' (Mt CO2 eq, %)

Total GHG Emission with LULUCF = 229.08 MtEq

Share of GHG type by sector

EXAMPLE OF KEY CATEGORIES ANALYSIS

Key Categories: CH₄

Key source category of CH4 emission in 2000 : 58.83 MtCO2 eq (or 2.80 Mt CH4) (Top 10 category / total contribution = 99.5%)

Key Categories: N₂O

Key source category of N2O emission in 2000: 12.39 MtCO2 eq (or 39.98 Gg N2O) (Top 10 category / total contribution = 99.8%)

Net Emission / Removals (Mt CO2 eq, %)

$-\bullet-$ Total use $-\bullet-$ N fertilizer

USE RATE—PADDY FIELDS

- × Data use, Cultivation area
- × Application rate
 - + 266 kg/ha for first crop
 - + 352 kg/ha for second crop

Fertilizer	Use portion (%)				
	Central region	Northeast region			
16-20-0	55. 50	31.03			
46-0-0	41.63	5. 17			
16-16-8	2. 39	50.00			
16-12-8	-	8. 62			
15-15-15	0. 48	3. 45			
16-8-8	-	1. 73			

ACTIVITY DATA

	Total	N fertilizer (Ton)	N fertilizer (Ton)	
Year	fertilizer (Ton)		Rice	Others
2000	3, 654, 794. 00	767, 506. 74	419, 234. 33	348, 272. 41
2001	3, 713, 328. 00	779, 798. 88	438, 316. 56	341, 482. 32
2002	3, 775, 529. 00	792, 861. 09	440, 189. 98	352, 671. 11
2003	3, 952, 356. 00	829, 994. 76	453, 764. 92	376, 229. 84
2004	3, 708, 000. 00	778, 680. 00	450, 796. 89	327, 883. 11
2005	3, 567, 000. 00	749, 070. 00	454, 569. 94	294, 500. 06

ที่มา: สำนักงานเศรษฐกิจการเกษตร, 2550

F_{CR}

	Annual	Residue to	Total nitrogen	
Crop type	Production	Crop Ratio	entering the soil	
	(Gg)		(Kg N)	
Year 2000				
Major Rice	19,788	0.75	4,229,685.00	
Minor Rice	5,156	0.75	0.00	
Maize	4,639	0.89	13,211,872.00	
Canes	54,052	0.3	3,972,822.00	
Cassava	19,064	0.14	9,848,462.40	
Sorghum	148	0.81	287,712.00	
Peanut	132	1	403,920.00	
Soybean	312	2.02	2,571,379.20	
Mungbean	226	2.1	1,258,639.20	
Year 2000			35,784,491.80	

ที่มา: สำนักงานเศรษฐกิจการเกษตร, 2550

INDIRECT EMISSION

Fraction loss as NOx + NH3

Nitrogen source	N inputs	Fraction loss as NOx+NH3	Total loss	
	(Kg N)		(Kg N)	
Synthetic N	767,506,740.00	0.1	76,750,674.00	
Animal mannure	537,101,086.60	0.2	107,420,217.32	

Loss via leaching and run-off

Nitrogen sources	Total amount of nitrogent input	Fraction loss via leaching & run-off	Total nitrogen loss	
	(Kg N)		(Kg N)	
Synthetic N	767,506,740.00	0.3	230,252,022.00	
Animal manure	537,101,086.60	0.3	161,130,325.98	

EMISSION FACTORS

Source Category	Default EF	EF range	
4D1. Direct emission			
4D1.1 Emission from chemical fertilizer	0.01	0.003-0.03	
4D1.2 Emission from paddy field	0.003	0.00-0.006	
4D1.3 Manure application to soil	0.01	0.003-0.03	
4D1.4 Crop residue application	0.01	0.03-0.003	
4D1.5 Grazing animal	0.02	0.007-0.06	
4D2. In direct Emission			
4D2.1 Emission from atmospheric deposition of NOx and NH3	0.01	0.002-0.05	
4D2.2 Emisssion from leaching and runoff	0.0075	0.0005 - 0.025	

N₂O EMISSION

Source of N ₂ O	Amount (GgN ₂ O)
Direct	
Synthetic N fertilizer	6.10
Animal manure N	3.79
Crop residue N	0.50
Grazing animal	9.57
Direct emission total	19.96
Indirect	
Deposition of NOx and NH ₃	3.38
Leaching and runoff	5.12
Indirect emission total	8.50
Grand total	28.46

Leaching and runoff 18%

Atmospheric deposition 12%

Mannure application 13%

Synthetic N

21%

Grazing animal 34%

Crop residue 2%

EMISSION IN 2000 FROM 'AGRICULTURE' (MT CO₂ EQ,%)

Emission in 2000 by 'Agriculture' (Mt CO2 eq, %)

JGSEE, 2553

Share of GHG type by sector

JGSEE, 2553

KEY CATEGORIES ANALYSIS

		5B. CO2 Emissio	on from Forest ar	nd Grassland Cor	nversion					
		1A3	. CO2 Mobile Cor	mbustion: Road	Vehicles					
		5C. CO2 Emissio	n from Abandon	ment of Manage	ed Lands					
	1A1. CO2 E	missions from Sta	tionary Combust	ion (Gas-A): Nat	ural Gas 📘					
	1A2.CO2 E	Emissions from M	anufacturing Indu	ustries and Cons	truction				1	
			4C. CH4 Emissio	ns from Rice Pro	duction				1	
	1A1.CC	02 Emissions from	Stationary Comb	oustion (Solid-D)	: Lignite					
		2A	. CO2 Emissions f	rom Cement Pro	duction					
	5A. CO2 Emission	from Changes in	Forest and Other	r Wo <mark>ody Biomas</mark>	s Stocks					
	4A. CH4 E	missions from En	teric Fermentatic	on in Domestic L	ivestock					
	4D. N	20 (Direct and In	direct) Emissions	from Agriculutu	ıral Soils					
1	A1. CO2 Emission	s from Stationary	Combustion (Liq	uid-D): Residual	Fuel Oil					
	1A1. CO2 E	missions from Sta	tionary Combust	ion (Liquid-A): C	rude Oil					
		1A4. CO2 Oth	ner Sectors: Agric	ulture/Forestry/	/Fishing					
		6A. CH4 E	Emissions from Sc	olid Waste Dispo	sal Sites					
		1B2. CH4 Fugitiv	ve Emissions fron	n Oil and gas Op	erations					
			1A4. CO2 Ot	her Sectors: Res	idential					
-50	-40	-30	-20	-10	0	1	10	20 3	30 4	.0 50

Thank you