$\mathrm{N}_{2} \mathrm{O}$ EMISSION FROM AGRICULTURE SOILS IN THAILAND

Amnat Chidthaisong

The Joint Graduate School of Energy and Environment, King Mongkut's University of Technology Thonburi (KMUTT)
amnat_c@jgsee.kmutt.ac.th

DECISION TREE: Direct $\mathrm{N}_{2} \mathrm{O}$ emission from Agricultural Soils

AGRICULTURAL SOILS

- N inputs (origin of direct $\mathrm{N}_{2} \mathrm{O}$ emissions):
$\sqrt{ }$ - application of synthetic fertilizers (FSN)
$\sqrt{ }$ - application of animal manure (FAM)
$\sqrt{ }$ - Grazing animal
\mathbf{X} - cultivation of nitrogen-fixing crops (FBN)
$\sqrt{ }$ - incorporation of crop residues into soils (FCR)
$\mathbf{X}=$ soil N mineralization due to cultivation of organic soils (FOS)
X= other sources, such as sewage sludge

CROP RESIDUES MASS BALANCE

ANIMAL MANURE MASS BALANCE

DECISION TREE: Indirect $\mathrm{N}_{2} \mathrm{O}$ emission from Agricultural Soils

National total including LULUCF $=229.09 \mathrm{Mt} \mathrm{CO2} \mathrm{eq}$

GHG emission in 2000 (Mt CO2 eq, \%) - by sector

LULUCF $=-13.35(5 a)+44.47(5 \mathrm{~b})-39.02(5 \mathrm{c}) \mathrm{Mt}=\operatorname{sinK}-7.90 \mathrm{Mt} \mathrm{Eq}$

JGSEE, 2553

EMISSION IN 2000 FROM "AGRICULTURE' (MT $\mathrm{CO}_{2} \mathrm{EQ}, \%$)

Emission in 2000 by 'Agriculture' (Mt CO2 eq, \%)

Industrial processes,

Total GHG Emission with LULUCF $=\mathbf{2 2 9 . 0 8} \mathbf{~ M t E q}$

Share of GHG type by sector

CO2 emission in 2000 (Mt CO2 eq) - by sector

N2O emission in 2000 (Mt CO2 eq) - by sector

EXAMPLE OF KEY CATEGORIES ANALYSIS

Key Categories: CH_{4}

Key source category of CH4 emission in 2000 : 58.83 MtCO 2 eq (or 2.80 Mt CH 4) (Top 10 category / total contribution = 99.5\%)

Key Categories: $\mathrm{N}_{2} \mathrm{O}$

Key source category of N2O emission in 2000: 12.39 MtCO 2 eq (or 39.98 Gg N 2 O) (Top 10 category / total contribution = 99.8\%)

USE RATE-PADDY FIELDS

- Data use, Cultivation area
* Application rate
+ $266 \mathrm{~kg} /$ ha for first crop
$+352 \mathrm{~kg} / \mathrm{ha}$ for second crop

Fertilizer	Use portion (\%)	
	Central region	Northeast region
$16-20-0$	55.50	31.03
$46-0-0$	41.63	5.17
$16-16-8$	2.39	50.00
$16-12-8$	-	8.62
$15-15-15$	0.48	3.45
$16-8-8$	-	1.73

ACTIVITY DATA

	Total fertilizer (Ton)	fertilizer (Ton)		N fertilizer (Ton)	
			Others		
2000	$3,654,794.00$	$767,506.74$	$419,234.33$	$348,272.41$	
2001	$3,713,328.00$	$779,798.88$	$438,316.56$	$341,482.32$	
2002	$3,775,529.00$	$792,861.09$	$440,189.98$	$352,671.11$	
2003	$3,952,356.00$	$829,994.76$	$453,764.92$	$376,229.84$	
2004	$3,708,000.00$	$778,680.00$	$450,796.89$	$327,883.11$	
2005	$3,567,000.00$	$749,070.00$	$454,569.94$	$294,500.06$	

ที่มา: สำนักงานเศรษฐกิจการเกษตร, 2550

Crop type	Annual Production	Residue to Crop Ratio	Total nitrogen entering the soil
	(Gg)		$(\mathrm{Kg} \mathrm{N})$
Year 2000			
Major Rice	19,788	0.75	$4,229,685.00$
Minor Rice	5,156	0.75	0.00
Maize	4,639	0.89	$13,211,872.00$
Canes	54,052	0.3	$3,972,822.00$
Cassava	19,064	0.14	$9,848,462.40$
Sorghum	148	0.81	$287,712.00$
Peanut	132	1	$403,920.00$
Soybean	312	2.02	$2,571,379.20$
Mungbean	226	2.1	$1,258,639.20$
Year 2000			$35,784,491.80$

ที่มา: สำนักงานเศรษฐกิจการเกษตร, 2550

INDIRECT EMISSION

Fraction loss as NOx + NH3

Nitrogen source	N inputs	Fraction loss as NOx+NH3	Total loss
	$(\mathrm{Kg} \mathrm{N})$		$(\mathrm{Kg} \mathrm{N})$
Synthetic N	$767,506,740.00$	0.1	$76,750,674.00$
Animal mannure	$537,101,086.60$	0.2	$107,420,217.32$

Loss via leaching and run-off

Nitrogen sources	Total amount of nitrogent input	Fraction loss via leaching \& run-off	Total nitrogen loss
	$\mathbf{(K g ~ N)}$		$\mathbf{(K g ~ N)}$
Synthetic N	$767,506,740.00$	0.3	$230,252,022.00$
Animal manure	$537,101,086.60$	0.3	$161,130,325.98$

EMISSION FACTORS

Source Category	Default EF	EF range		
4D1. Direct emission		0.01		
4D1.1 Emission from chemical fertilizer	0.003	$0.003-0.03$		
4D1.2 Emission from paddy field	0.01	$0.00-0.006$		
4D1.3 Manure application to soil	0.01	$0.03-0.003$		
4D1.4 Crop residue application	0.02	$0.007-0.06$		
4D1.5 Grazing animal				
4D2. In direct Emission	0.01	0.0 .0		
$\begin{array}{l}\text { 4D2.1 Emission from atmospheric deposition } \\ \text { of NOx and NH3 }\end{array}$	0.0075		$\left.\begin{array}{l}\text { 4D2.2 Emisssion from leaching and runoff }\end{array}\right]$	0.025
:---				

$\mathrm{N}_{2} \mathrm{O}$ EMISSION

Source of $\mathrm{N}_{2} \mathrm{O}$	Amount (GgN2O)		
Direct			
Synthetic N fertilizer	6.10		
Animal manure N	3.79		
Crop residue N			
Grazing animal	0.50		
	9.57		
Indirect	19.96		
Deposition of NOx and $\mathbf{N H}_{3}$			
Leaching and runoff	$\mathbf{3 . 3 8}$		
Indirect emission total			5.12
Grand total			$\mathbf{8 . 5 0}$

EMISSION IN 2000 FROM "AGRICULTURE' (MT $\mathrm{CO}_{2} \mathrm{EQ}, \%$)

Emission in 2000 by 'Agriculture' (Mt CO2 eq, \%)

Industrial processes,

Total GHG Emission with LULUCF $=\mathbf{2 2 9 . 0 8} \mathbf{~ M t E q}$

Share of GHG type by sector

CO2 emission in 2000 (Mt CO2 eq) - by sector

N2O emission in 2000 (Mt CO2 eq) - by sector

JGSEE, 2553

KEY CATEGORIES ANALYSIS

Thank you

