The 8<sup>th</sup> Workshop on GHG Inventories in Asia (WGIA8) 13-16 July 2010 Vientiane, Lao PDR

### GHG inventory in LULUCF Sector of Myanmar

Min Zaw Oo Forest Department, Myanmar (minzaw8@gmail.com)

### Introduction

- Myanmar ratified UNFCCC on 25 November, 1994 as a non-Annex I Party.
- Article 12.5 of the UNFCCC requires non-Annex I Parties to prepare their initial national communications.
- Myanmar has yet to submit INC report to UNFCCC.
- In Myanmar, the preliminary GHG inventory and mitigation options assessment were undertaken during the ALGAS study in 1997.
- NCEA of Myanmar launched an INC-project since 2008 with the financial assistance from GEF/UNEP.

### **INC Project in Myanmar**

- GHG Inventory and Mitigation Options Analysis
- Vulnerability and Adaptation Assessment
- Development and transfer of Environmentally Sound Technologies (ESTs)
- Research and Systematic Observation
- Education, Training and Public Awareness
- Compilation of National Communication

### **GHG Study Team**

- Energy: Fuel combustion, Fugitive emissions from fuels, CO<sub>2</sub> transport and storage
- Industrial Processes and Product Use: Mineral, chemical & metal industries, Non-energy products from fuels and solvent use, Electronics industry, Product uses as substitutes for O<sub>3</sub> depleting substances, Other product manufacture and use, Other
- Agriculture: Agriculture and Livestock, Aggregate sources and non-CO<sub>2</sub> emissions sources in land
- LUCF: CO<sub>2</sub> emissions/absorption by land, Identify the activities of emission sources in different land use categories
- Waste: Solid waste disposal, Biological treatment of solid waste, Incineration and open burning waste, Waste water treatment and discharge

### Inventoried GHGs

- Carbon Dioxide
- Methane
- Nitrous Oxide
- NOx
- Carbon Monoxide

# Summary of emissions in Myanmar for the year 2000

| Source/ Sink                                 | CO <sub>2</sub><br>Emission | CO<br>Emission                | CH <sub>4</sub><br>Emission                        | N <sub>2</sub> O<br>Emission  | NO <sub>x</sub><br>Emission  | CO <sub>2</sub><br>Equivalent<br>Total<br>Emission            | CO <sub>2</sub><br>Removal | CO <sub>2</sub><br>Equivalent<br>Total Net<br>Emission         |
|----------------------------------------------|-----------------------------|-------------------------------|----------------------------------------------------|-------------------------------|------------------------------|---------------------------------------------------------------|----------------------------|----------------------------------------------------------------|
|                                              | (Gg)                        | (Gg)                          | (Gg)                                               | (Gg)                          | (Gg)                         | (Gg)                                                          | (Gg)                       | (Gg)                                                           |
| Energy<br>(Traditional<br>Biomass<br>burned) | 7,658.65<br>(27,833.09)     | -                             | 5.62<br>(7.4553)                                   | 0.28<br>(0.9941)              | -                            | 7,863.47<br>(28,297.82)                                       | -                          | 7,863.47<br>(28,297.82)                                        |
| Industrial<br>Processes                      | 248.59                      | -                             |                                                    | -                             | -                            | 463.29 *                                                      | -                          | 463.29                                                         |
| AgricultureA. Agri.B.LivestockForestry       | -<br>-<br>33,656.51         | 0.81<br>0.81<br>-<br>2,215.37 | <b>963.58</b><br>507.23<br>456.35<br><b>144.85</b> | 8.2706<br>8.2706<br>-<br>4.26 | 0.022<br>0.022<br>-<br>34.08 | <b>22,800.46</b><br>13,217.11<br>9,583.35<br><b>40,404.86</b> | -<br>-<br>142,221.19       | <b>22,800.46</b><br>13,217.11<br>9,583.35<br><b>101,816.33</b> |
| Waste                                        | -                           | •                             | 134.57                                             | •                             | -                            | 2,825.97                                                      | -                          | 2,825.97                                                       |
| TOTAL                                        | 41,563.75                   | 2,216.18                      | 1,248.62                                           | 12.8106                       | 34.102                       | 74,358.05                                                     | 142,221.19                 | - 67,863.14                                                    |

### Methodology for LUCF Sector

• Annual change in carbon stocks in biomass for a land use category was calculated by Gain-Loss Method (Equation 2.7 in IPCC guidelines, 2006):

$$\Delta C_{\rm B} = \Delta C_{\rm G} - \Delta C_{\rm L}$$

 $\Delta C_B$  = sum of aboveground biomass and belowground biomass

 $\Delta C_G$  = biomass growth for each land sub category

 $\Delta C_L$  = biomass loss for each land sub category

### Methodology (Contd.)

• Annual increase in biomass carbon stocks due to biomass increment was calculated as follow: (Equation 2.9 in IPCC guidelines, 2006)

$$\Delta C_{G} = \sum (A_{i,j} \cdot G_{TOTALi,j} \cdot CF_{i,j})$$

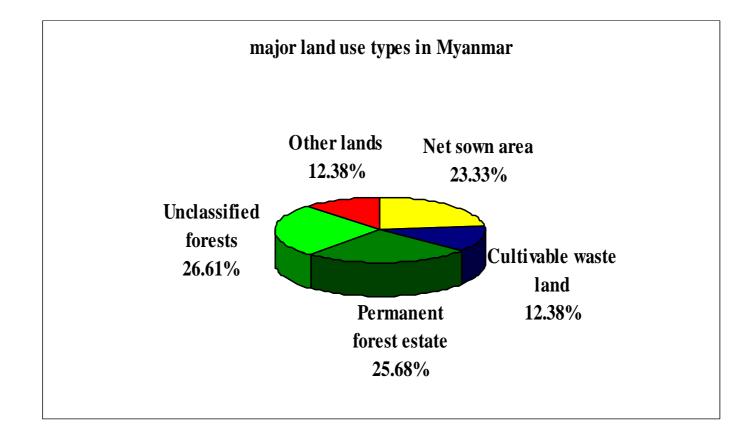
A = area of land remaining in the same land use category

- G<sub>TOTAL</sub>= mean annual biomass growth
- CF = carbon fraction of dry matter

### Methodology (Contd.)

• Annual decrease in biomass carbon stocks due to biomass losses was calculated as follows: (Equation 2.11 in IPCC guidelines, 2006)

 $\Delta C_L = L_{wood \ removals} + L_{fuelwood} + L_{disturbance}$  $L_{wood \ removals} = annual \ carbon \ loss \ due \ to \ wood \ removals}$ 


L<sub>fuelwood</sub> = annual carbon loss due to fuelwood removals

L<sub>disturbance</sub> = annual carbon losses due to disturbances

### Identification of Sinks

- Natural forests
- Forest Plantations
- Home Garden Trees
- Road side Trees

#### Major land use types in Myanmar




#### Natural forest Resources of Myanmar for the year 2000

| Forest type                         | Forest Type                     | Area     | Percent of total |
|-------------------------------------|---------------------------------|----------|------------------|
| (Myanmar)                           | (IPCC)                          | (ha)     | forest area      |
| Tropical ever green forest          | Tropical rain forest            | 5528640  | 16               |
| Mixed deciduous forest              | Tropical moist deciduous forest | 13476060 | 39               |
| Dry forest                          | Tropical dry forest             | 3455400  | 10               |
| Dipterocarps forest                 | Tropical dry forest             | 1727700  | 5                |
| Hill and temperate evergreen forest | Subtropical mountain system     | 8984040  | 26               |
| Beach and dune forest               | Tropical rain forest            | 1382160  | 4                |
| TOTAL                               |                                 | 34554000 | 100              |

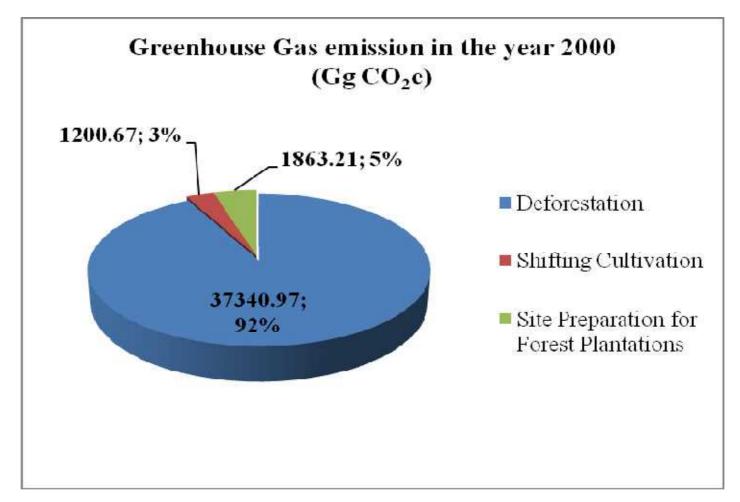
#### Carbon sinks in 2000

142,221.19 Gg CO<sub>2</sub>



### Identification of GHG Sources

- Wood Removal
- Fuelwood removal
- Harvested wood products
- Biomass burning

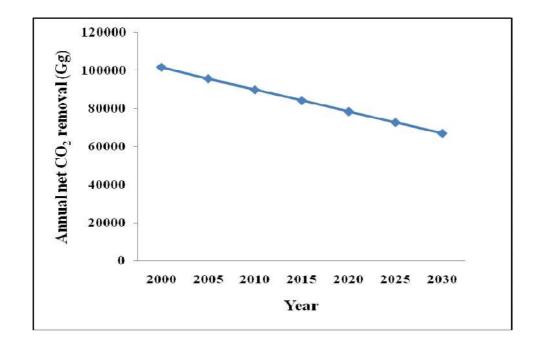

Site preparation for forest plantations Shifting cultivation Deforestation

#### Loss of carbon and GHG emissions by activities

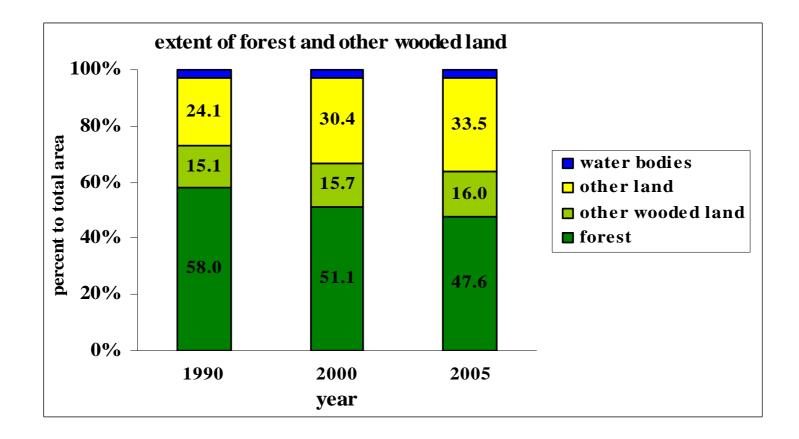
| Activity                                | Loss of carbon | GHG emission                  |
|-----------------------------------------|----------------|-------------------------------|
| Wood removal                            | 2 176 888 tC   | Not accounted                 |
| Fuelwood removal                        | 26 936 418 tC  | Accounted (Energy sector)     |
| Harvested wood products                 | Not estimated  | Not accounted                 |
| Site preparation for forest plantations | -              | 1 863 207 tCO <sub>2</sub> e  |
| Shifting cultivation                    | -              | 1 200 674 tCO <sub>2</sub> e  |
| Deforestation                           | -              | 37 340 974 tCO <sub>2</sub> e |

#### **GHG Emissions in 2000**

40,404.86 Gg CO<sub>2</sub> e




#### Net emission/removal in LUCF sector of Myanmar for the year 2000


| Activity             | CO <sub>2</sub> emissions<br>(Gg) | CO <sub>2</sub> removals<br>(Gg) | Net CO <sub>2</sub> emissions/<br>removals (Gg) |  |
|----------------------|-----------------------------------|----------------------------------|-------------------------------------------------|--|
| Natural forests      | -                                 | 129 838.59                       | (-) 129 838.59                                  |  |
| Forest plantations   | 1 863.207                         | 11 750.04                        | (-) 9 886.833                                   |  |
| Home garden trees    | -                                 | 470.07                           | (-) 470.07                                      |  |
| Roadside trees       | -                                 | 162.49                           | (-) 162.49                                      |  |
| Wood removal         | -                                 | -                                | -                                               |  |
| Fuelwood removal     | (Energy sector)                   | -                                | -                                               |  |
| HWP                  | -                                 | -                                | -                                               |  |
| Shifting cultivation | 1 200.674                         | -                                | (+) 1 200.674                                   |  |
| Deforestation        | 37 340.974                        | -                                | (+) 37 340.974                                  |  |
| TOTAL                | 40 404.855                        | 142 221.19                       | (-) 101 816.38                                  |  |

#### Trend of GHG emissions/removal in Myanmar

- Net GHG removal in LUCF sector shows it is still a major carbon sink until 2030.
- CO<sub>2</sub> removal by LUCF sector can compensate the total emission by different sectors.
- However the projection of net GHG removal in 2030 pointed out the constant decline because of decrease in natural forest area.
- Net CO<sub>2</sub> removal in 2000 was estimated to be 101816.38 Gg which would reduce to 78589.07 Gg in 2020 and 67085.05 Gg in 2030.



#### Trend of forests and other wooded lands in Myanmar



### Data Gaps and constraints

- Country specific data (emission factors, biomass growth, soil emission/absorption)
- Lack of data for soil erosion
- Land use change national data
- Use of RS/GIS limitations
- Institutional set up (CC- focal institution to be established)
- Trainings/Capacity building
- Expertise / human resources
- Research needs

## Thank You Very Much for Your Kind Attention!!