


## Experiences on Disaggregated Activity Data Acquisition for Greenhouse Gas Inventory in Waste and Agricultural Sector

#### Sirintornthep Towprayoon

The Joint Graduate School of Energy and Environment King Mongkut's University of Technology Thonburi Bangkok Thailand

#### Thai National GHG Inventories





1990 : ALGAS 1998 : Min. of Natural Resources

1994 : INC 2003 : Min. of Energy

#### Nature of sector

#### **Waste Sector**

- SWDS
- Activity data by population/ actual data at sites
- EF: default
- Waste model

#### **Agricultural Sector**

- Rice field emission
- Activity data is annually reported by cultivation area
- EF: varied by cultivation practice
- GIS-Based

## Understanding IPCC waste model

- 1996 IPCC GL : Mass balance and FOD
- 2006 IPCC GL: Combined MB and FOD
- Activity data ---MB
- Emission factor ----k value
- More convenience and more reliable
- Allow for disaggregate level of data depend on each country historical data

#### Waste model

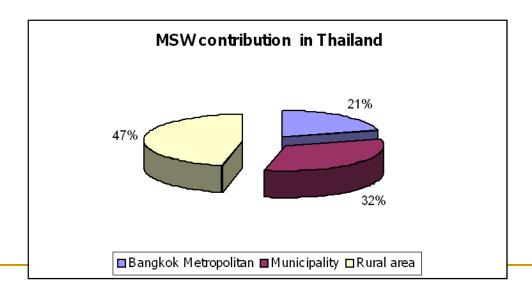
- Major sheet in waste model
- Parameter
  - DOC : waste composition
  - □ DOCf : 0.5
  - Methane generation rate constant (k): multiphase
  - Delay time : 6 months
  - Fraction of methane : 0.5
  - Oxidation factor: 0



#### Waste model

- Major sheet in waste model
- MCF
  - Unmanaged shallow: 0.3
  - Unmanaged deep: 0.8
  - Managed :1
  - Managed semi aerobic : 0.5
  - Uncategorized: 0.6
- Distribution of waste by waste management types






#### Waste model

- Major sheet in waste model
- Activity
  - Total MSW
    - Population
    - Waste generation rate
  - % to SWDS
  - Composition of waste go to SWDS

#### MSW in Thailand

- Total MSW in 2005 = 39211 TPD
  - Bangkok metropolitan = 8,201 TPD
  - Municipality = 12,685 TPD
  - Rural area = 18,205 TPD



Decrease from last year 1.8 %

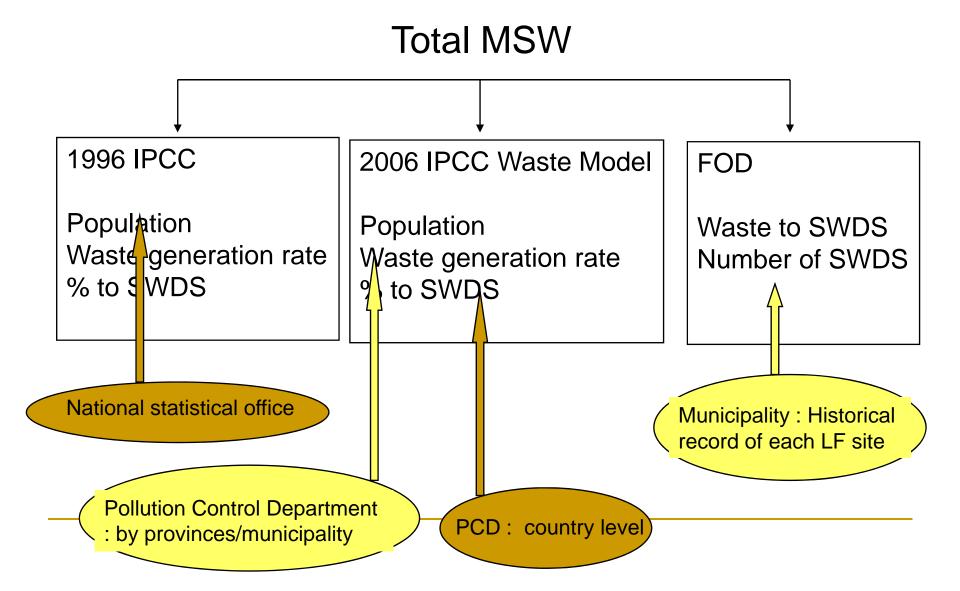


#### MSW Treatment in Thailand

- 104 Sanitary landfills (94 in operation)
- 3 Incinerations
- 3 Combined technology
- 7 dump sites
- Coverage of 43 % of MSW treated in municipality

#### Characteristic of Landfill

#### Size of landfill


- □ 4-50 TPD = 53 sites
- □ 50-100 TPD = 26 sites
- □ 100-200 TPD = 9 sites
- □ > 200 TPD = 6 sites

#### MCF

- 0.3 = 51 sites = 54 %
- 0.6 = 17 sites = 18 %
- 0.8 = 26 sites = 28 %



## Source and level of Activity Data



## Activity Data

#### Waste composition

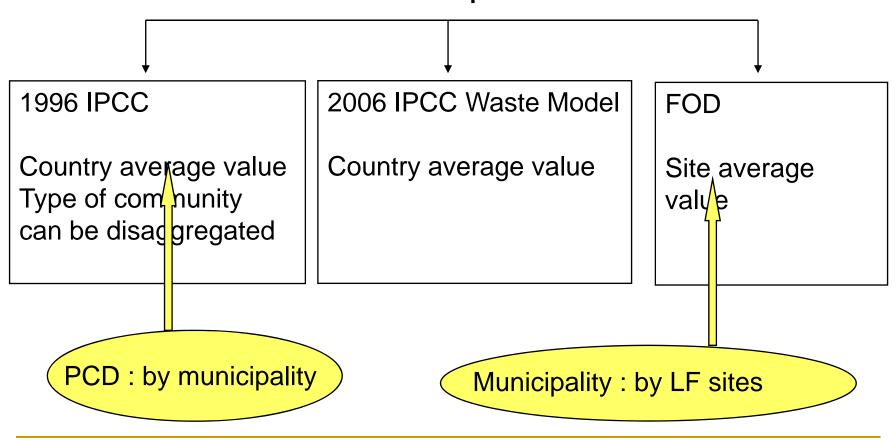
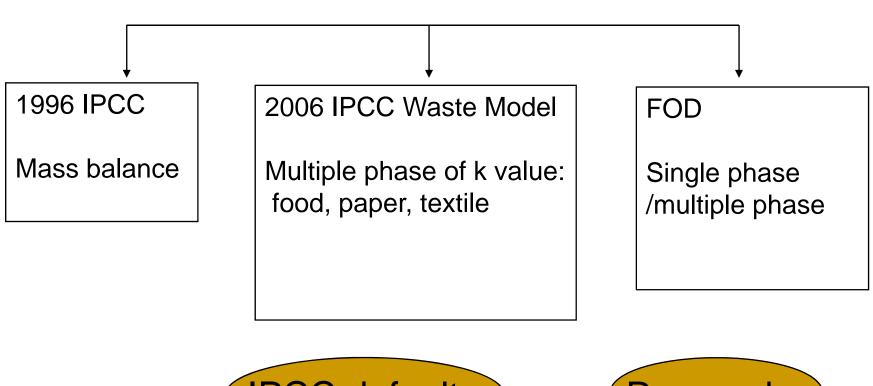



Table 4.4 Summary of input parameters for methane emission inventory

|    |                |                    |              |     | Waste characteristics (%) |       |       |          |
|----|----------------|--------------------|--------------|-----|---------------------------|-------|-------|----------|
|    | Landfill sites | Tipping rate (tpd) | Open<br>year | MCF | Food                      | Paper | Wood  | Textiles |
| 1  | Chaingrai      | 80                 | 1995         | 0.8 | 45.00                     | 10.00 | 10.00 | 2.00     |
| 2  | Huayerai       | 13                 | 1998         | 0.3 | 15.00                     | 10.00 | 10.00 | 5.00     |
| 3  | Waingphang     | 8                  | 2004         | 0.3 | 33.00                     | 17.75 | 11.90 | 3.12     |
| 4  | Maehongson     | 15                 | 2002         | 0.3 | 36.67                     | 11.67 | 11.67 | 6.67     |
| 5  | Phayao         | 35                 | 2003         | 0.3 | 66.16                     | 14.75 | 1.31  | 1.31     |
| 6  | Phrae          | 35                 | 2001         | 0.3 | 22.00                     | 28.40 | 22.21 | 4.02     |
| 7  | Sukothai       | 34                 | 2001         | 0.3 | 40.00                     | 15.10 | 20.20 | 2.00     |
| 8  | Nan            | 38                 | 2000         | 0.3 | 43.67                     | 12.77 | 0.27  | 2.92     |
| 9  | Utharadit      | 40                 | 2003         | 0.8 | 67.33                     | 6.20  | 0.66  | 0.55     |
| 10 | Pitsanulok     | 91                 | 1999         | 0.3 | 68.59                     | 2.53  | 0.89  | 1.51     |
| 11 | Pichit         | 26                 | 2000         | 0.3 | 39.00                     | 13.85 | 4.47  | 5.48     |
| 12 | Nakornsawan    | 100                | 1994         | 0.8 | 54.53                     | 10.03 | 4.03  | 1.88     |
| 13 | Uthaithanee    | 36                 | 2001         | 0.3 | 70.77                     | 3.37  | 0.60  | 0.50     |
| 14 | Maesod         | 50                 | 1999         | 0.8 | 37.59                     | 13.42 | 9.47  | 4.35     |
| 15 | Thaklee        | 22                 | 2003         | 0.3 | 54.53                     | 10.03 | 4.03  | 1.88     |

#### Example of SWDS database


| จับ≀กัด                                 | ชื่อเทศบาล    |               | องค์ประกอบของบะมูล ฮะ(รัฮสะโดยน้ำหนัก) |        |      |       |        |       |          |            |       |        |
|-----------------------------------------|---------------|---------------|----------------------------------------|--------|------|-------|--------|-------|----------|------------|-------|--------|
|                                         |               | เสษากร        | ന്ദ്യപ്പ                               | พลสติก | เก้า | โลเ⁄ะ | ยงหนัง | ហ័ា   | ไม้ใปไม้ | หินกระเบื่ | อื่นๆ |        |
| นครนายา                                 | 1 หมนครนายา   | 65.09         | 7.18                                   | 20     | 0.72 | 1.12  | 0.36   | 0.53  | -        | -          | 231   | 100.00 |
|                                         | 2 ทฤษท่าบ้าง  | <b>5</b> 0.00 | 1000                                   | 10.00  | 5.00 | 5.00  | 0.00   | 0.00  | 15.00    | 5.00       | 0.00  | 100.00 |
|                                         | 3. ทุกบ้านนา  | 40.00         | 15.00                                  | 10.00  | 5.00 | 5.00  | 5.00   | 7.00  | 10.00    | 3.00       | 0.00  | 100.00 |
| •                                       | 4 ทุดเภาะหภาย | <b>5</b> 0.00 | 25.00                                  | 5.00   | 200  | 1.00  | 200    | 3.00  | 10.00    | 1.00       | 1.00  | 100.00 |
| *************************************** | 5 ทดองศรักษ์  | _             | _                                      | _      | _    | _     | _      | _     | _        | _          | _     | 0.00   |
|                                         | alt.          | 205.09        | <i>5</i> 7.18                          | 47.69  | 1272 | 12.12 | 7.36   | 10.53 | 35.00    | 9.00       | 3.31  | 400.00 |
|                                         | เกลี่ย        | 51.27         | 1430                                   | 11.92  | 3.18 | 3.03  | 1.84   | 263   | 875      | 225        | 0.83  | 100.00 |

| จัท≀กัด | 2ี่อเทศบาล    | จำเวน ประชาช |        | ปริมาณ        | อัตการ |  |
|---------|---------------|--------------|--------|---------------|--------|--|
|         |               | ครัวเรือน    | (คน)   | นะมูล         | เกิดแย |  |
| นครนายา | 1 หมนครนายก   | 6,062        | 17,564 | 15.46         | 0.88   |  |
|         | 2 ทฤษก่าก้าง  | 232          | 915    | 0. <b>5</b> 6 | 0.61   |  |
|         | 3 ทฤบ้านนา    | 1,496        | 6,016  | 602           | 100    |  |
|         | 4 ทุดเภาะหภาย | <b>55</b> 9  | 2,165  | 136           | 0.63   |  |
|         | 5 ทฅอษศักษ์   | *            | 2,691  | 161           | 0.60   |  |
|         |               |              |        |               |        |  |
|         | เกลี่ย        | 8,349        | 29,351 | 25.01         | 0.85   |  |

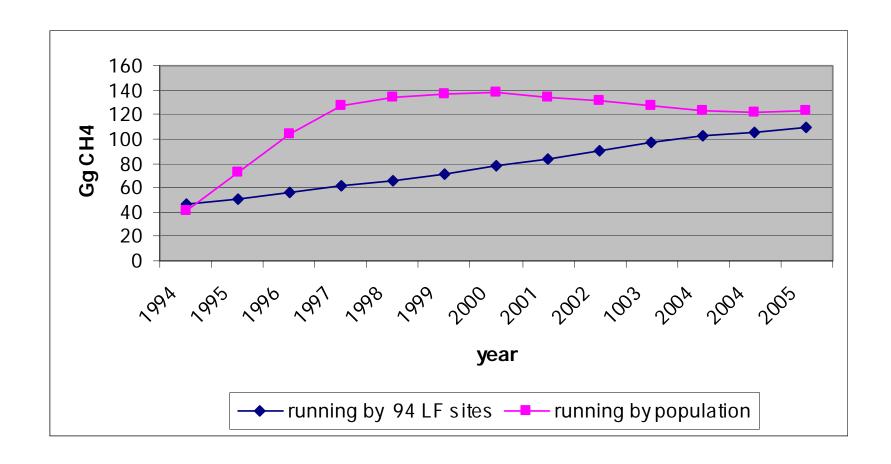
## Example of waste composition data base

#### Emission factor

#### Methane generation rate constant



**IPCC** default


Research

## Running Waste Model

- Population 48 % rural area
- Waste generation average 0.64 kg/cap/d
- MCF from site information
- Waste composition country average
- K value IPCC defaults
- Recovery 0

- Actual waste in place in SWDS sites
- MCF from site information
- Waste composition by each site
- K value IPCC defaults ( multi phase)
- Recovery 0

#### Comparison of methane estimation



## Summary for Waste Sector

- Historical data is very important the longer, the more reliable result.
- Uncertainty can be reduced by using appropriate disaggregate level of activity data

### Disaggregated activity data in rice field

- Emission is estimate by area\* EF
- EF are varied by type of cultivation
- Uncertainty is very high
- Plantation area can be achieved by
  - Annual national statistical report recorded by local authority collected by Ministry of Agriculture
  - GIS map

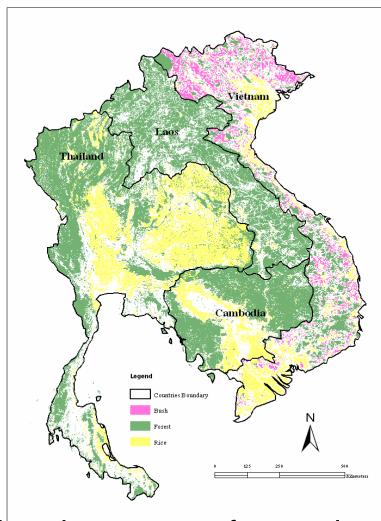
## Disaggregated level of cultivation area

- Up land, low land,
- Rain fed, irrigated system
- Organic and chemical fertilizer application





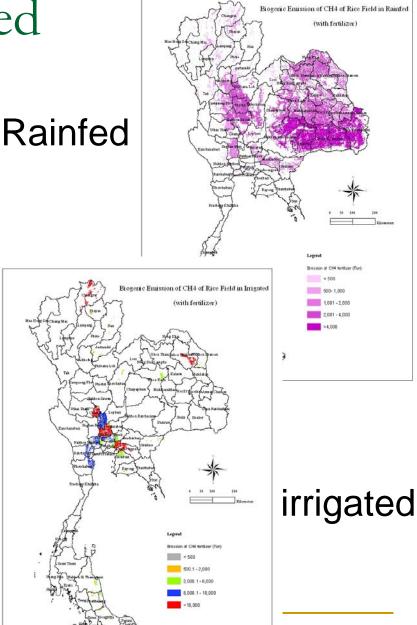
#### Estimate by statistical report


Table 3.2 Methane Emission Factors for Different Water Ecosystem and Organic Amendment

| Category    | Sub-category |                           | Sub-category |   | Scaling<br>factors<br>for rice<br>ecosystem | Correction<br>factors<br>for organic<br>amendment | Emission<br>factors<br>kg CH <sub>4</sub> /ha/day |  |
|-------------|--------------|---------------------------|--------------|---|---------------------------------------------|---------------------------------------------------|---------------------------------------------------|--|
| Major rice  |              |                           |              |   |                                             |                                                   |                                                   |  |
| Upland      | Rainfed      | -                         | 0            | 1 | 0                                           |                                                   |                                                   |  |
|             | Irrigated    | Continuously flooded + OM | 1            | 2 | 3.120                                       |                                                   |                                                   |  |
|             |              | Continuously flooded      | 1            | 1 | 1.560                                       |                                                   |                                                   |  |
|             |              | Flood prone               | 0.8          | 2 | 1.248                                       |                                                   |                                                   |  |
| Low land    | Rainfed      | Flood prone + OM          | 0.8          | 1 | 2.496                                       |                                                   |                                                   |  |
| LOW IATIO   | Kairiieu     | Drought prone             | 0.4          | 1 | 0.624                                       |                                                   |                                                   |  |
|             |              | Drought prone + OM        | 0.4          | 2 | 1.248                                       |                                                   |                                                   |  |
|             | Deep water   | Water depth > 100 cm      | 0.6          | 1 | 0.936                                       |                                                   |                                                   |  |
| Second rice | Irrigated    | Continuously flooded + OM | 1            | 2 | 3.120                                       |                                                   |                                                   |  |

Key EF = 1.560 kg CH4/ha/day

Source: Thai NC 1994


### Estimate by GIS-based



Land-use map of countries of the MRBSR (2000)

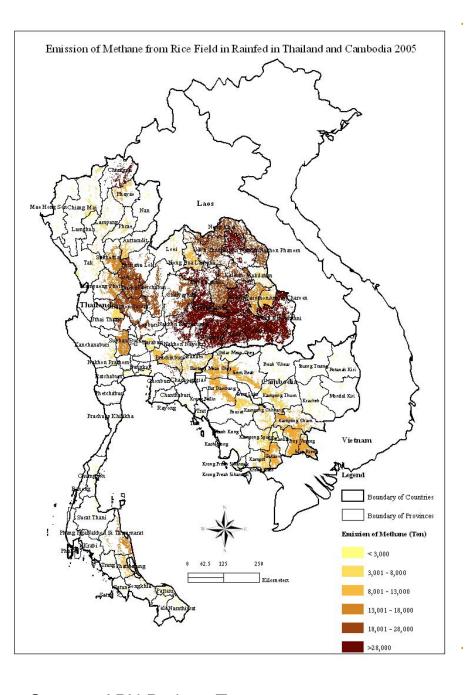
Source: APN Project -Towprayoon

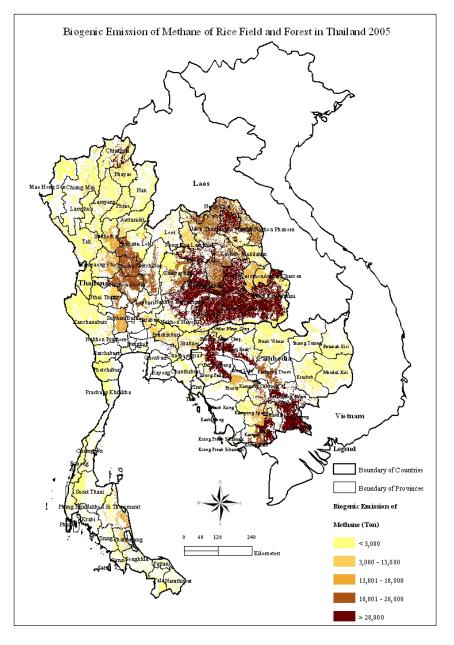




## GIS-Based

Table 8. Estimated emission of CH<sub>4</sub> and N<sub>2</sub>O from rice paddy in Thailand


| Rice Field               | Area<br>(×10 <sup>6</sup> m²) | Emission<br>(mg/m²) |                  | Biogenic Emission from<br>Rice Field (Ton) |                  |  |
|--------------------------|-------------------------------|---------------------|------------------|--------------------------------------------|------------------|--|
| Trice Field              |                               | CH₄                 | N <sub>2</sub> O | CH <sub>4</sub>                            | N <sub>2</sub> O |  |
| Irrigated first crop     | 14,686.34                     | 97.623              | 0.2937           | 172,046.99                                 | 517.61           |  |
| Irrigated second<br>crop | 14,686.34                     | 97.623              | 0.2937           | 172,046.99                                 | 517.61           |  |
| Rain-fed                 | 130,393.82                    | 45.71               | 0.2937           | 715,236.19                                 | 4,595.60         |  |
|                          | Total                         |                     |                  | 1,059,330.17                               | 5,630.82         |  |








Source : APN Project -Towprayoon





Source : APN Project -Towprayoon

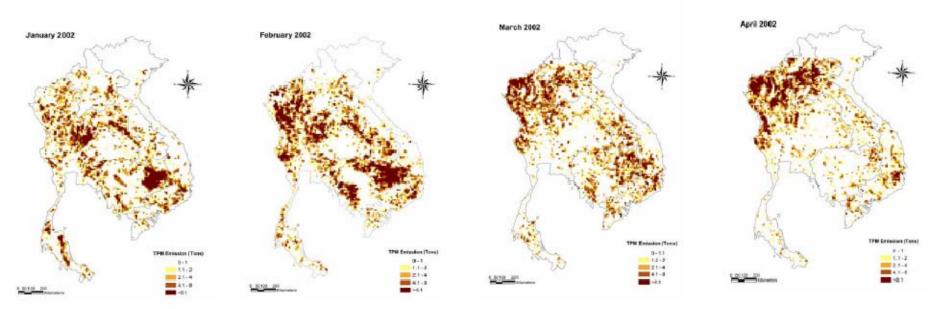



Figure 6. Maps of monthly CO emissions in the MRBSR during January-April 2002

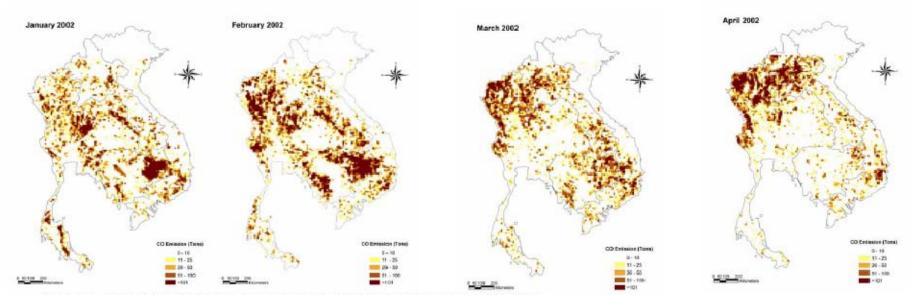
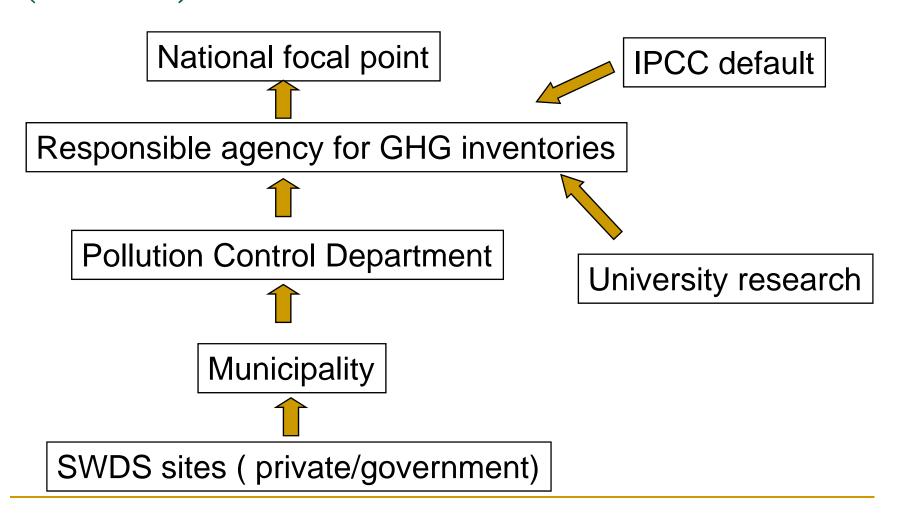



Figure 7. Maps of monthly TPM emissions in the MRBSR during January-April 2002

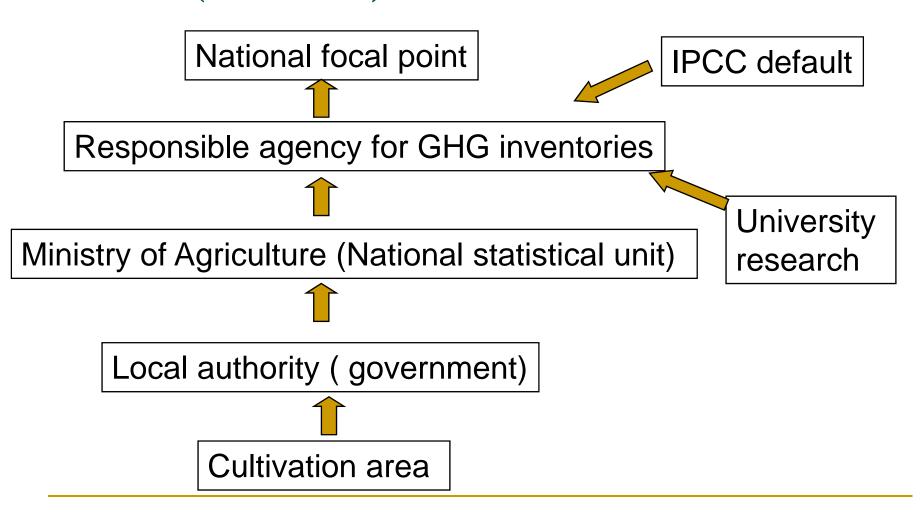
## Comparison

#### INC

- EF:
- rainfed system = 0.6-2.49 kgCh4/ha/day
- Irrigated system = 1.56-3.1 kgCh4/ha/day
- Using scaling factor and collection factor
- Total emission = 2110Gg CH4


#### GIS base

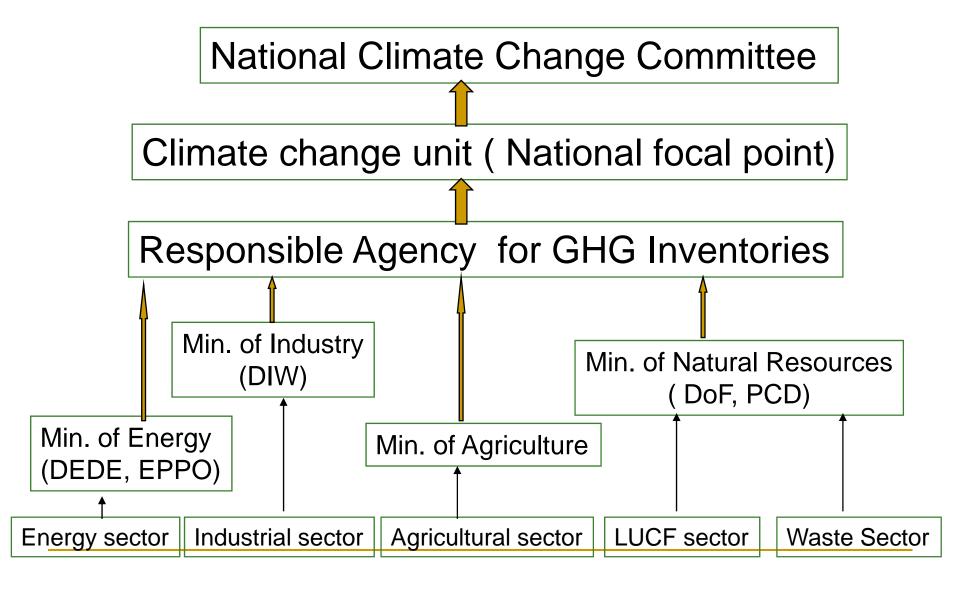
- EF = 0.7321 kgCh4/ha/day for rainfed and 1.56 kgCh4/ha/day for irrigated
- Total emission = 1059Gg CH4


## Summary of Agricultural Sector

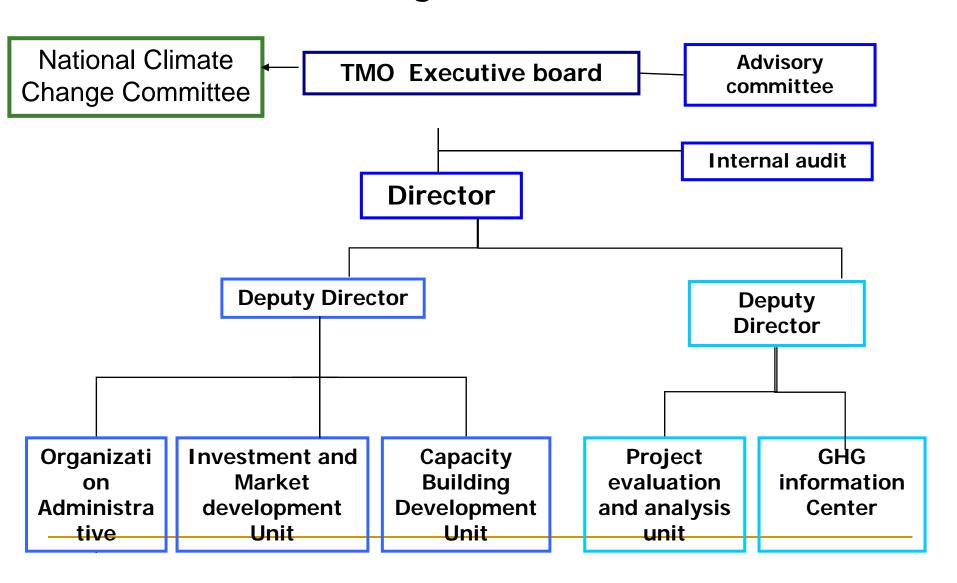
- Disaggregated EFs are important to reduce uncertainty
- Spatial information can be used in substitute of statistical report to see the overview emission in term of area. However comparison need to be done

# Institutional arrangement for waste sector (SWDS)




# Institutional arrangement for agricultural sector (rice field)




## Barrier of data acquisition

- No central unit for achieving national data
- Many Authorized institutes involved
- Reporting is not systematic
- Bureaucratic
- Personal contact

#### Structure of National GHG Inventories



## Structure of Thailand Greenhouse Gas Management Organization



## Thank you for your attention



