

Sustainable Energy Development

GHG Inventory in the Energy Sector and Industrial Processes

5th Workshop on GHG Inventories in Asia (WGIA5) 6-7 September 2007

Presentation Outline

- Identification of GHG Sources
- Scope of the Inventory
- Steps Taken in Preparing the Inventory
- Data Estimation and Approach
- Key Category Analysis
- Constraints and Problem Encountered
- Further Refinement in GHG Inventory

GHG Sources

- Emissions are estimated from the following categories/sources:
 - Energy Sector
 - Fuel Combustion
 - Fugitive Emissions from Fuel (Coal Mining and Oil & Gas System)
 - Burning of biomass fuel in energy industries
 - Industrial Processes
 - Production and Consumption of Mineral products, Chemical products, Metal, Halocarbons, Sulphur Hexaflouride and other products in Malaysian industries

Identification of GHG Sources

Gases Covered:

- Carbon dioxide(CO₂)
- Methane (CH₄)
- Nitrous Oxide (N₂O)
- Hydrofluorocarbon (HFC)
- Sulphur Hexafluoride (SF₆)

- Base Year: 2000
- Guidelines: Revised 1996 IPCC Guidelines Workbook, Reference Manual and IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories

Scope of the Inventory

Sectors Covered:

- i. Energy Sector (Fuel Combustion)
 - Power Industry
 - Transport (Road, Rail, Navigation, Aviation)
 - Industry
 - Residential
 - Commercial
 - Agriculture/Forestry/Fishery
 - Others (Transformation and Military Road Transport)
- ii. Industrial Processes
 - Metal (Iron & Steel)
 - Chemical (Ammonia, Nitric Acid, Carbide, Other petrochemical products)
 - Mineral (Cement, Lime, Limestone and Dolomite)
 - Consumption of Hydrofluorocarbon (HFC)
 - Consumption of Sulfur Hexafluoride (SF₆)

Steps Taken in Preparing the Inventory

Sustainable Energy Development

Data Collection and Management for Energy Sector

- 1. National Energy Balance : Secondary Data
 - which document the data on Malaysia's primary production of energy supply and final demand of energy
 - it reports a number representing a total amount of fuel use which based on fuel type
- 2. Primary data
 - which taken from respective agencies e.g. Malaysia Railways Limited (KTMB) and Malaysia International Shipping Corporation (MISC)
 - to fulfill the data requirement in the IPCC Worksheet e.g. Transport – Road, Rail, Navigation, Aviation

Data Estimation and Approach in Transport Sector

- Proportion of data based on the following percentage
- The proportion is based on the complete data set of segregation of fuel from the oil supplier

Transport Sub- sector	Percentage (%)					
	Diesel	Petrol	Natural Gas	Jet Kerosene	Residual Fuel Oil	
Road	74%	100%	100%			
Rail	1%					
National Navigation	25%				100%	
Domestic				100%		
Aviation						

IPCC Worksheet: Transport Sector

MODULE	ENERGY					ENERGY						
SUBMODULE	CO2 FROM FUEL COMBUSTION BY SOURCE CATEGORIES (TIER 1)					CO2 FROM FUEL COMBUSTION BY SOURCE CATEGORIES (TIER 1)						
WORKSHEET	1-2 STEP BY STEP CALCULATIONS					1-2 STEP BY STEP CALCULATIONS						
SHEETS	5 OF 16 TR	ANSPORT					6 OF 16	TRANSPORT				
COUNTRY	Malaysia						Mal	aysia				
YEAR	2000						2000	1				
	STEP 1	STI	aP 2		STEP 3		ļ	STEP 4		STI	æ5	STEP 6
	A	В	С	D	E	F	G	Н	I	J	К	L
TRANSPORT	Consumption	Conversion	Consumpti on	Carbon	Carbon Content	Carbon Content	Fraction	Carbon of Stored	Net Carbon	Fraction of	Actual Carbon	Actual CO ₂
		Factor	(TJ)	Emission Factor	(t C)	(GgC)	Carbon Stored	(GgC)	Emissions	Carbon Oxidised	Emissions	Emissions
		(TJ/Unit)		(t C/TJ)					(GgC)		(GgC)	(Gg CO ₂)
			C=(AxB)		E=(CxD)	F=(E/1000)		H=(FxG)	I=(F-H)		K=(IxJ)	L=(Kx[44/12])
Domestic Aviation ^(a)												
Jet Kerosene	1574	41.84	65,856.16	19.5	1,284,195.12	1,284.20			1,284.20	0.99	1,271.35	4,661.63
		Subtotal	65,856.16								Subtotal	4,661.63
Road Transport						1		-	1			
Natural Gas	7	41.84	292.88	15.3	4,481.06	4.48			4.48	0.995	4.46	16.35
Gasoline	6378	41.84	266,855.52	18.9	5,043,569.33	5,043.57			5,043.57	0.99	4,993.13	18,308.16
Gas/Diesel Oil	3016	41.84	126,189.44	20.2	2,549,026.69	2,549.03			2,549.03	0.99	2,523.54	9,252.97
		Subtatal	303 337 94								Subtatal	27 577 47
Rail Transnort		5 65 10 141	323,331.04								15 05 10 101	
Gas/Diesel Oil	27	41.84	1,135.54	20.2	22,937.86	22.94			22.94	0.99	22.71	83.26
		Subtotal	1,135.54								Subtotal	83.26
National Navigati	ion ^(a)											
Gas/Diesel Oil	1060	41.84	44,350.40	20.2	895,878.08	895.88			895.88	0.99	886.92	3,252.04
Residual Fuel Oil	4	41.84	167.36	21.1	3,531.30	3.53			3.53	0.99	3.50	12.82
	Total T	Subtotal ransport ^(a)	44,517.76 504,847,30							Total T	Subtotal ransport ^(a)	3,264.86

Data Estimation and Approach in Agriculture Sector

•Assumptions

- Stationary: 5%
- Mobile: 95%
- Based on discussion with Ministry of Agriculture
- Data Source: National Energy Balance Report

MODULE	ENERGY				ENERGY							
SUBMODULE	CO2 FROM I	UEL COM	BUSTION	BY SOUR	CE CATEGO	RIES (TIER	CO2 FF	OM FUEL	COMBUST	ION BY SC	DURCE CAT	EGORIES (TIER 1)
WORKSHEET	1-2 STEP BY	STEP CAL	CULATION	IS			1-2 STE	P BY STE	CALCULA	TIONS		
SHEETS	13 OF 16 AGR	ICULTURE	/ FOREST	RY / FISH	ING		14 OF 16	6 AGRICU	LTURE / FOI	RESTRY / F	ISHING	
COUNTRY	Malaysia						Malaysia	a				
YEAR	2000						2000					
	STEP 1	STI	EP 2		STEP 3			STEP 4	ļ	ST	EP 5	STEP 6
	A	В	С	D	E	F	G	н	I	J	К	L
	Consumption	Conversio	Consumpt	Carbon	Carbon	Carbon	Fraction	Carbon	Net Carbon	Fraction	Actual	
AGRICULTURE /		n	ion	Emission			of	Stored		of	Carbon	
												Actual CO ₂
							Carbon					
FORESTRY / FISHING							Stored					
		_				-	(a)			Carbon		
		Factor	(TJ)	Factor	Content	Content	.,	(GgC)	Emissions	Oxidised	Emissions	Emissions
		(TJ/Unit)		(t C/TJ)	(t C)	(GgC)			(GgC)		(GgC)	(GgCO ₂)
			C=(AxB)		E=(CxD)	F=(E/1000)		H=(FxG)	I=(F-H)		K=(IxJ)	L=(Kx[44/12])
Mobile												
Gasoline	2.85	41.84	119.24	18.9	2,253.71	2.25			2.25	0.99	2.23	8.18
Gas/Diesel Oil	248.9	41.84	10,413.98	20.2	210,362.32	210.36			210.36	0.99	208.26	763.62
Residual Fuel Oil	11.4	41.84	476.98	21.1	10,064.19	10.06			10.06	0.99	9.96	36.53
	To	tal Mobile	11,010.20							Te	otal Mobile	808.33
Stationary												
Gasoline	0.15	41.84	6.28	18.9	118.62	0.12			0.12	0.99	0.12	0.43
Gas/Diesel Oil	13.1	41.84	548.10	20.2	11,071.70	11.07			11.07	0.99	10.96	40.19
Residual Fuel Oil	0.6	41.84	25.10	21.1	529.69	0.53			0.53	0.99	0.52	1.92
	Total	Stationary	579.48							Total	Stationary	42.54

Sustainable Energy Development

Data Collection and Management for Industrial Processes

Data Estimation and Approach - Nitric Acid Production (N₂O Emission)

- Nitric Acid Production: 75,392 tonnes
- Emission factor: 8.79 kg N₂O/t HNO₃ (actual measurement)

MODULE	INDUSTRIAL PROCESSES	INDUSTRIAL PROCESSES					
SUBMODULE	NITRIC ACID PRODUCTIO	Ν					
WORKSHEET	2-7						
SHEET	I OF 1 N ₂ O AND NO _x EMISS	SIONS					
COUNTRY	Malaysia						
YEAR	2000	2000					
А	В	С	D				
Amount of Nitric	Emission Factor	Pollutant Emitted	Pollutant Emitted				
Acid Produced	(kg pollutant/t nitric						
(t)	acid produced)	(kg)	(Gg)				
		$C = (A \times B)$	D = C/1 000 000				
75,392	N ₂ O 8.79	662,695.68	N ₂ O 0.66				
	NO _x	0.00	<i>NO</i> _{<i>x</i>} 0.00				

Key Category Analysis – Energy Sector

	2000					
Sources	C	O ₂	CI	H4	N	20
Categories	Gg	%	Gg	%	Gg	%
Total National Emissions	168,037		1,202.21		0.69	
Energy Sector	133,529		1,198		0.03	
1. Reference Approach	133,529					
2. Sectoral Approach	118,806	100				
a. Energy Industries	37,126	31				
i. Autoproducers	1,799	5				
ii. Power	35,327	95				
b. Manufacturing Industries and Construction	24,150	20				
i. Manufacturing	17,790	74				
ii. Mining	268	1				
iii. Construction	6,092	25				
c. Transportation	35,587	30				
i. Road	27,577	78				
ii. Rail	83	0.2				
iii. Aviation	4,662	13				
iv. Navigation	3,265	9				

Key Category Analysis – Energy Sector

Sources	C	02	Cł	H ₄	N ₂ O	
d. Other Sectors i. Residential ii. Commercial iii. Agriculture iv. Fisheries v. Forestry	4,797 1,820 2,127 804 38 8	5 38 44 17 0.8 0.2				
e. Others i. Gas Transformation and Losses ii. Military Road	17,145 17,102 43	14 99 0.3				
a. Fugitive Emissions from Fuel i. Coal Mining and Handling ii. Oil and Gas System			1,198 0.28 1,197	100 <i>1</i> 99		
b. Emission from Biomass Fuels					0.03	100

Key Category Analysis – Industrial Processes

Sources	CO ₂		C	H ₄	N ₂ O	
Industrial Processes	17,254	100	4.21	100	0.66	100
a. Mineral Products i. Cement Production ii. Lime Production iii. Limestone and Dolomite Use	9,670 6,617 153 2,901	56 68 2 30				
b. Chemical Industry i. Ammonia Production ii. Nitric Acid Production iii. Carbide Production iv. Petrochemicals	1,192 1,176 16	7 99 1	4.21 4.21	100 100	0.66 0.66	100 <i>100</i>
c. Metal Production i. Iron and Steel Production	6,392	37				

Key Category Analysis – Industrial Processes

Sources	H	-C	S	F ₆
Categories	Gg	%	Gg	%
Total National Emissions	0.2	100	0.02	100
Industrial Processes	0.2	100	0.02	100
a. Consumption of HFC 134a for Mobile Air Conditioning (MAC)	0.2	100		
b. Consumption of SF ₆			0.02	100

Key Category Analysis – Results

Sectors		Emissions (Gg)	GWPs	CO2 Equivalent (Gg)
		А	В	C=(A x B)
Energy	CO2	133,529	1	133,529.00
	сн₊	1,198	21	25,158.00
	N_2O	0.03	310	9.3
Sub total				158,696.30
Industrial	CO ₂	17,254	1	17,254.00
Processes	сн₊	4.21	21	88.4
	N_2O	0.66	310	204.6
	HFC	0.2	1,300	260
	SF6	0.02	23,900	478
Sub total				18,285.00
Total				176,981.30
Emissions				
Net Total (excluding HFC and SF ₆)				176,243.30

Constraints and Problems Encountered in Inventory

Constraints and Problems	Description	Strategy and Measures
Data Organisation	 Mismatch in sectoral detail across different published documents Inconsistency in top-down and bottom- up data sets for same activities 	 Survey done to organise the data Assumptions was made based on most accurate published documents Verification with related sources Explanatory note for the inconsistency in the reporting
Non-availability of relevant data	Data for refining inventory to higher tier levels	 Questionnaire were prepared and survey was done in respective agencies Conservative approach was used to estimate the data
Non-accessibility of data	 Lack of institutional arrangements for data sharing – time consuming to compile data Time delays in data access Proprietary data for inventory reporting 	 Establish protocols and establish effective networking with data providers Create more awareness activity Involve industry and monitoring
	 Time delays in data access Proprietary data for inventory reporting at Tier II and Tier III level 	 Create more awareness activit Involve industry and monitorininstitutions

Constraints and Problems Encountered in Inventory

Constraints and Problems	Description	Strategy and Measures
Technical and institutional capacity needs	 Discussions and meetings with certain organisation in identifying data needs Training the specific institutions in GHG inventory methodologies and data formats 	 Series of discussions and meetings were held Arrange extensive training programs
Non-representative emission factor/coefficients	Inadequate data for representative emission measurements in the sectors	Conduct measurement for key categories in future
Resources to sustain national communication effort esp. in energy sector	Sustain and enhance research networks established under Initial and second National Communications	 Regular Updates are required to ensure sustainability of GHG Inventory (e.g. 2001 – 2005 Inventory Exercise) Dedicated source of funding i.e. NRE

Further refinement in GHG Inventory

- 1. Continuous and improved networking with stakeholders
- 2. QA/QC for inventory development
- 3. Developing emission factors representing Malaysian conditions
- 4. On-line data collection to facilitate data submission

Thank You

Pusat Tenaga Malaysia No. 23-1 & 23-2 Jalan 9/9C, Seksyen 9 Bandar Baru Bangi 43650 Bangi Selangor Website: www.ptm.org.my E-mail: info@ptm.org.my

