IPCC 2019 Refinement: AFOLU METHANE EMISSIONS FROM RICE CULTIVATION

Sumana Bhattacharya

India

Refinements in 2019 Update with Respect to 2006 Guidelines

- Baseline emission factor (EF) at a global scale with new default values at regional scale;
- Scaling factors for water regimes before and during the cultivation periods; and
- Default conversion factors for different types of organic amendments.
- A new table on default cultivation periods, at global and regional scales, is provided, and
- A new section showing an example of how to implement the Tier 1 method.
- Also included is a new box on good practice guidance for developing EFc.

CH₄ Emission from Rice Cultivation: Influencing Condition

- Regional differences in rice cropping practices
- Multiple Crops
- Rice Ecosystems type (continuously and intermittently flooded (irrigated rice), and regular rainfed, drought prone, and deep water (rainfed), according to the flooding patterns during the cultivation period. Also, flooding pattern before cultivation period should be considered)
- Organic amendments to soils (Organic material incorporated into rice soils increases CH4 emissions and can be described by a dose response curve. Organic material incorporated into the soil can either be of endogenous (straw, green manure, etc.) or exogenous origin (compost, farmyard manure, etc.).
- Soil type
- Rice cultivar
- Sulphate containing amendments
- Any other

Decision Tree: Choice of Methodology for Estimating CH4 Emission

> Calculate emissions using the Tier 1 default emission factor and scaling factors together with activity data for harvested area and cultivation period.

CH4 Emission Calculation Formulae

 $CH_4 = \sum_{ijk} (Ef_{ijk} * t_{ijk} * A_{ijk} * 10^{-6})$

Where

Tier 1: EF = EFc * SFw * SFp * SFo (Updated) Tier 2: EF = EFc * SFw * SFp * SFo * SFs * SFr (New) Tier 3: EF is based on models and monitoring networks tailored to address national circumstances of rice cultivation, repeated over time, driven by high-resolution activity data such as satellite-based and in-situ measurement and disaggregated at sub-national level.

Notation

CH4 *Rice* = Annual methane emissions from rice cultivation, Gg CH4 yr-1 EF*ijk* = Daily emission factor for *i*, *j*, and *k* conditions, kg CH4 ha-1 day-1 t*ijk* = cultivation period of rice for *i*, *j*, and *k* conditions, day A*ijk* = annual harvested area of rice for *i*, *j*, and *k* conditions, ha yr-1 *i*, *j*, and *k* = represent different ecosystems, water regimes, type and amount of organic amendments, and other conditions under which CH4 emissions from rice may vary

Where

EFi = Adjusted daily emission factor for a particular harvested area

EFc = Baseline emission factor for continuously flooded fields without organic amendments

SFw = Scaling factor for differences in water regime during the cultivation period

SFp = Scaling factor for the differences in water regime in the pre-season before the cultivation period

SFo = Scaling factor for type and amount of organic amendment applied

SFs = Scaling factor for soil type

SFr = Scaling factor for rice cultivar

Default CH₄ Baseline Emission Factor Assuming no Flooding for Less Than 180 Days Prior to Rice Cultivation, and Continuously Flooded During Rice Cultivation Without Organic Amendments (UPDATED: Table 5.11)

Emission Factor (k CH4/ha/day)	Error range (Kg CH4/ha/day)	Region	Emission factor (kg CH4/ha/day)	Error range Kg CH4/ha/day)
1.19	0.80-1.76	Africa*	1.19	0.80-1.76
		East Asia	1.32	0.89-1.96
		Southeast Asia	1.22	0.83-1.81
		South Asia	0.85	0.58-1.26
		Europe	1.56	1.06-2.31
		North America	0.65	0.44-0.96
		South America	1.27	0.86-1.88

Note: Emission factors and error ranges were estimated based on 95% confidence interval, using statistical model with updated database; See Annex 5A.2 for more information.

*For Africa, the global estimate is used due to lack of data.

20-08-2019

Default Cultivation Period of Rice (New Guidance: Table 5.11A)

Cultivation Period (days)	Error range (days)	Region	Cultivation Period (days)	Error range (days)
113	74-152	Africa*	113	74-152
		East Asia	112	73-147
		Southeast Asia	102	78-150
		South Asia	112	90-140
		Europe	123	111-153
		North America	139	110-165
		South America	124	110-146

Note: Cultivation period was calculated from updated database, and the error range or uncertainty was based on the 2.5th percentile to 97.5th percentile of the distribution of ratios; See Annex 5A.2 for more information. For Africa, the global estimate is used due to lack of data.

Table 5.12: Default CH₄ Emission Scaling Factors for Water Regimes During the Cultivation Period Relative to Continuously Flooded Fields (Updated)

Water Regime		Aggrega	ted case	Disaggregated Case		
		Scaling Factor (SFw)	Error Range	Scaling Factor (SFw)	Error Range	
Upland*		0	-	0	-	
Irrigated**	Continuously Flooded	0.60	0.44 - 0.78	1.00	0.73-1.27	
	Single Drainage period			0.71	0.53-0.94	
	Multiple Drainage Periods			0.55	0.41-0.72	
Rainfed and Deep water***	Regular Rainfed	0.45	0.32 -0.62	0.54	0.39-0.74	
	Drought prone			0.16	0.11-0.24	
	Deep water	0.06	0.03 -0.12	0.06	0.03-0.12	

Source: Scaling factors and error ranges (based on 95% confidential interval) were determined using statistical model and updated database; see Annex 5A.2 for more information.

Notes:

* Fields are never flooded for a significant period of time.

****** Fields are flooded for a significant period of time and the water regime is fully controlled.

- Continuously flooded: Fields have standing water throughout the rice growing season and may only dry out for harvest (end-season drainage).
- Single drainage period: Fields have a single drainage event and period during the cropping season at any growth stage, in addition to the end of season drainage.
- Multiple drainage periods: Fields have more than one drainage event and period of time without flooded conditions during the cropping season, in addition to an end of season drainage, including alternate wetting and drying (AWD).

*** Fields are flooded for a significant period of time with water regimes that depend solely on precipitation.

- Regular rainfed: The water level may rise up to 50 cm during the cropping season.
- Drought prone: Drought periods occur during every cropping season.
- Deep water rice: Water level rises to more than 50 cm above the soil for a significant period of time during the cropping season.
- Other rice ecosystem categories, like swamps and inland, saline or tidal wetlands may be ₂₀₋₀₈₋₂₀₁₉ discriminated within each sub-category

Table 5.13: Default CH₄ Emission Scaling Factors for Water Regimes Before the Cultivation Period (Updated)

Water regime prior to rice cultivation	Aggregated case		Dissaggregated Case		
	Scaling Factor (SFp)	Error Range	Scaling Factor (SFp)	Error Range	
Non flooded pre season (<180 days)		1.08-1.37	1.00	0.88-1.12	
Non flooded pre season(> 180 days)	1 22		0.89	0.80-0.99	
Flooded pre season (>30 days) a,b	1.22		2.41	2.13-2.73	
Non-flooded pre season (> 365 days) c			0.59	0.41-0.84	

Source: Scaling factors and error ranges (based on 95% confidential interval) were determined using statistical model and updated database; see Annex 5A.2 for more information.
a Short pre-season flooding periods of less than 30 d are not considered in selection of SFp
b For calculation of pre-season emission see below (section on completeness)
c Refers to "upland crop - paddy rotation" or fallow without flooding in previous year.

Organic Amendment

$SFo = (1 + \sum i ROAi * CFOAi)^{-0.59}$

Where

SFo = scaling factor for both type and amount of organic amendment applied

ROA*i* = application rate of organic amendment *i*, in dry weight for straw and fresh weight for others, tonne/ha CFOA*i* = conversion factor for organic amendment *i* (in terms of its relative effect with respect to straw applied shortly before cultivation) as shown in next table

Table 5.14: Default Conversion Factors for Different Types of Organic Amendments (Updated)

Organic Amendment	Conversion Factor (CFOA)	Error Range
Straw incorporated shortly (<30 days) before cultivation*	1.00	0.85-1.17
Straw incorporated (>30 days) before cultivation*	0.19	0.11-0.28
Compost	0.17	0.09-0.29
Farm Yard Manure	0.21	0.15-0.28
Green manure	0.45	0.36-0.57

Table 5.14: Default Conversion Factors for Different Types of Organic Amendments (Updated)

Organic Amendment	Conversion Factor (CFOA)	Error Range	
Straw incorporated shortly (<30 days) before cultivation*	1.00	0.85-1.17	
Straw incorporated (>30 days) before cultivation*	0.19	0.11-0.28	
Compost	0.17	0.09-0.29	
Farm Yard Manure	0.21	0.15-0.28	
Green manure	0.45	0.36-0.57	

Source: Conversion factors and error ranges (based on 95% confidential interval) were determined using statistical model and updated database; see Annex 5A.2 for more information.

* Straw application means that straws are incorporated into the soil. It does not include cases where straws are just placed on soil surface, and straws that were burnt on the field.

Good Practice Guidance on Developing Baseline Emission Factors for CH4 Emissions From Rice Cultivation Using Closed Chamber Technique for Continuously Flooded Fields with Recommended Fertilizer Application and no Organic Amendment (New Guidance)

Details of

- Chamber Design
- Field Set up and Experimental Design
- Sampling Strategies
- Gas Analysis
- Data Processing
- Deriving Emission Factor
- Reference for more details refer to Minamikawa et al. (2015) and Sanders and Wassmann (2014).

Table 5.14a: Calculation for Total Harvested Area (New Guidance)

Rice Ecosystem	Rice Area (ha)	% of Total Area	Cropping Season (per year)	Harvested Area (ha/yr)
	Α	В	С	D = (A x C)
Irrigated				
- Irrigated Continuously Flooded	750,000	25	2	1,500,000
 Irrigated with Multiple drainage periods 	750,000	25	2	1,50,000
Rainfed	900,000	30	1	900,000
Upland	450,000	15	1	450,000
Deep Water	150,000	5	1	150,000
Total	3000,000	100		4,500,000

Table 5.14 b &C: Calculation for Total Harvested Area (New Guidance)

Rice Ecosystem-	Baseline Emission Factor (EFc) (kg CH4 ha-1 d-1) [from Table 5.11]	Scaling Factor for Water Regime during Cultivation (SFw) [from Table 5.12]	Scaling Factor for Pre- season Water Regime (SFp) [from Table 5.13]	Scaling Factor for Organic Amendment (SFo) [using Equation 5.4 and Table 5.14]	Adjusted Daily Emission Factor (EFi) [kg CH4 ha-1 d-1]	Cultivatio n Period (days)	Methane Emissions (Gg CH4 y-1)
	E	F	G	н	I	J	K=(D x I x J)x10 ⁻⁶
Irrigated							
 Irrigated Continuously Flooded 	1.22	1.00	1.00	1.21	1.48	102	226.4
 Irrigated with Multiple drainage periods 	1.22	0.55	1.00	1.21	0.81	102	123.93
Rainfed	1.22	0.54	0.89	1.00	0.59	102	54.16
Upland	1.22	0	0.89	1.00	0.00	102	-
Deep Water	1.22	0.06	2.41	1.00	0.18	220	5.94
TOTAL							410.47