Efficiency of Nitrification Inhibitors from Plants on Reducing Nitrous Oxide Emissions under Soil Incubation and Enhancing Maize (Zea mays L.) Growth, Yield and N Uptake in Pot Experiment

Phatchariya Welutung and Patthra Pengthamkeerati

Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Thailand

Abstract

This study investigated the effects of nitrification inhibitors (NIs) from plants for retarding soil nitrogen (N) transformation to reduce greenhouse gas emissions and, subsequently, promote N fertilizer use by plant. Selected plants for this study included commercial neem [Azadirachta indica] oil, peppermint [Mentha cordifolia], sweet basil [Ocimum basilicum] and hoary basil [Ocimum africanum]. NIs from these plants were applied at a rate of 10% of fertilizer. Result from the incubation showed that application of N fertilizer with hoary basil tended to have the best efficiency in retarding nitrification process, compared with the application of N fertilizer only (p<0.05). This was due to retarding soil N₂O emission up to 21 days, and significantly reducing cumulative soil N_2O emission (P = 0.0084) by 29.33% when compared to the treatment with only N fertilizer. Pot experiment was also conducted to study the NI efficiency on maize (Suwan 4452) growth and N use efficiency. The result showed that NIs tended to enhance maize growth, and seemed to increase maize yields (biomass and grain). N content and N uptake by maize in the treatment of urea fertilizer and hoary basil were significantly higher when compared to the urea treatment (P<0.0001), but no NI effect was found in maize yield. These findings support that NIs from plants can retard N transformation of fertilizer, which subsequently may reduce fertilizer losses and greenhouse gas emission, and increase plant N use efficiency and crop productivity.