## Discussion Paper Series

## Center for Social and Environmental Systems Research, NIES

No. 2012-01

## AIM/CGE [basic] manual

## Shinichiro Fujimori ${ }^{1 *}$ <br> Toshihiko Masai ${ }^{1}$ <br> Yuzuru Matsuoka ${ }^{2}$

${ }^{1}$ Center for Social and Environmental Systems Research, National institute for environmental studies Postal address: National institute for environmental studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
${ }^{2}$ Department of Urban and Environmental Engineering, Kyoto University
Postal address: 367, C1-3, Kyoto-daigaku Katsura campus, Nishikyo-ku, Kyoto city, Kyoto, 606-8540, Japan

* fujimori.shinichiro@nies.go.jp

February, 2012


#### Abstract

; This document describes about AIM/CGE2.0 model which is widely used in the AIM(Asia-Pacific Integrated Modeling) group assessments. AIM/CGE2.0 model is recursive type computable general equilibrium model and it can simulate energy supply and demand with the description about whole economic transaction. The basic idea of the model, model structure, fomula and how to deal with are documented in detail.


Key words;
Computable General Equilibrium model, Social Accounting Matrix, Energy Balance Table



| region.map | map for EDGAR country definition and AIM 106 regions |
| :--- | :--- | :--- |




| -global | a sub-directory including global model results |
| :---: | :---: |
| Łglobal_3 | a directory for storage global 3 region results |
| $\left\llcorner_{\text {temp }}\right.$ | temporary directory |
| -prog |  |
| \| | AEEI_mod.gms | AEEI setting program file |
| AIM_CGE.gms | main CGE program file |
| CGEdata_input.xlsm | input format |
| \| conopt.opt | CONOPT option file |
| \| emission.gms | a program for preparation of emission and its factor data |
| \| gmsproj.gpr | project file |
| Operation_file.gms | a program for operating this CGE model |
| \| scenario_parameter.gms | a program for making scenario parameters |
| \| path.opt | PATH option file |
| \| scenario.gms | secondary CGE program file |
| $1$ |  |
| —SAVE | temporary conditions are saved in this directory |
| global3.g00 | global temporary file |
| JPN.g00 | JPN's temporary file |
| Lscenario | a directory for programs of scenarios |
| BAU.gms | a program for setting scenario BAU case |
| CM.gms | a program for setting scenario CM case |

1. Introduction ..... 1
2. Social accounting matrix (used in the model) ..... 2
2.1. Social accounting matrix framework ..... 2
2.2. Sector classification .....  3
3. Model Structure ..... 5
3.1. Activity production and factor markets ..... 6
3.2. Institutions ..... 7
3.3. Commodity market ..... 8
3.4. Macro economic balances ..... 9
3.5. Air pollutants and GHG emissions ..... 9
4. Mathematical statement ..... 11
4.1. Price block. ..... 11
4.2. Production block ..... 16
4.3. Institution block ..... 25
4.4. International trade block ..... 29
4.5. Biomass consumption as fuel combustion ..... 30
4.6. Air pollutants and GHG emissions ..... 30
4.7. System constraint block ..... 35
4.8. Activity constraint block ..... 37
5. Model dynamics ..... 40
5.1. Capital ..... 40
5.2. Labor ..... 40
5.3. TFP (Total Factor Productivity) ..... 40
5.4. AEEI (Autonomous Energy Efficiency Improvement) ..... 41
6. How to use the model ..... 42
6.1. Simple excel file operation ..... 42
6.1.1. Input fundamental information ..... 42
6.1.2. Operation of CGE model through [input_data.xlsm] ..... 43
6.2. Program based operation. ..... 44
6.2.1. Program structure ..... 44
6.2.2. AIM_CGE.gms ..... 44
6.2.3. scenario.gms ..... 46
6.2.4. Preparation ..... 46
6.2.5. Putting codes into [operation_file.gms] ..... 47
6.2.6. Scenario making ..... 48
7. Result ..... 50
7.1. Simple excel file operation results ..... 50
7.2. General results ..... 50
References ..... 57
Appendix ..... 58

## List of tables and figures

Table 1 Standard social accounting matrix ..... 2
Table 2 Sector classification ..... 4
Table 3 Emission sources ..... 10
Table 4 Notational principles ..... 11
Table 5 meaning of the colors in the excel input format ..... 42
Table 6 List of AIM_CGE.gms components ..... 45
Table 7 List of scenario.gms components ..... 46
Table 8 country code list ..... 47
Table 9 List of the sheets in excel files [../output/country/"country_code" /xls/"country_code".xlsm] ..... 51
Table 10 series of decomposition ..... 52
Table 11 List of row and column components in energy balance table ..... 53
Table 12 Example of energy balance table in 2005 USA ..... 54
Table 13 Cell numbers of energy balance table ..... 54
Table 14 List of the correspondence for energy balance table and CGE model variables ..... 54
Table 15 Sector mapping table ..... 56
Table 16 Energy source mapping ..... 56
Figure 1 Overview of AIM/CGE model structure (for one region) ..... 5
Figure 2 Production structure (Non-energy transformation sectors) ..... 6
Figure 3 Production structure (Energy transformation sectors) ..... 7
Figure 4 Overview of simple excel operation ..... 43
Figure 5 Overview of the program structure ..... 44
Figure 6 AIM_CGE.gms structure ..... 45
Figure 7 scenario.gms structure ..... 46
Figure 8 First part of [operation_file.gms] ..... 48
Figure 9 Decomposition analysis graph example ..... 52

## 1. Introduction

CGE model is one of the most useful tools for empirical economic analysis. During the last few decades, the CGE (computable general equilibrium) model has been applied to various countries and to the whole world for not only economic analysis but also energy consumption and greenhouse gas emission analysis.

We, the AIM(Asia-pacific Integrated model) team, have been investigating CGE model for more than ten years. ${ }^{1}$. The CGE model is used for the analysis of global and country CO2 emissions, mitigation costs or carbon taxes. Recently, we rebuilt the CGE model called as "AIM/CGE2.0" referring to "A standard CGE model" which was developed by Lofgren et al. (2002) ${ }^{2}$. This document describes the new of CGE model. This document is organized as follows.
(1) Social accounting matrix (used in the model)
(2) Model structure
(3) Mathematical statement of the model
(4) Model dynamics
(5) How to use the model
(6) results

[^0]
## 2. Social accounting matrix (used in the model)

### 2.1. Social accounting matrix framework

A social accounting matrix (SAM) is a comprehensive, economy-wide data framework, typically representing the economy of a nation. In this model we use global SAM so it covers not only nation but also some regions. A SAM is a square matrix in which each account is represented by a row and a column. Each cell shows the payment from the account of its column to the account of its row. Thus, the incomes of an account appear along its row and its expenditures down its column. The underlying principle of double-entry accounting requires that, for each account in the SAM, total revenue (row total) equals total expenditure (column total). Table 1 shows an aggregated SAM concept with verbal explanations in the cells instead of numbers. The payments are not permitted in the blank cells of Table 1.

Table 1 Standard social accounting matrix


The typical SAM distinguishes between accounts for "activities" (the entities that carry out production) and "commodities". They are definitely different from general Input-output table framework. The receipts are valued at producer prices in the activity accounts and at market prices (including value added commodity taxes which is a part of tax on products and prodcution) in the commodity accounts.

Same as the IFPRI's framework2 the domestic nongovernment institutions in the SAM consist of households and enterprises. The enterprises earn factor incomes (reflecting their ownership of capital and/or land). They may also receive transfers from other institutions. Their incomes are used for direct taxes, savings, and transfers to other institutions. As opposed to households, enterprises do not consume. Technically, the standard CGE model requires that the SAM have at least one household account; enterprise accounts are not necessary.

The property income and current transder are accounted in this SAM as they may be different from other SAM framework. They represent the transaction among institution sectors. They are basically aggregated into one category but optionally can be differentiated as the objectives of the model simulation.

AIM/CGE couples multiple assounting framewok for SAM. Concretely, typical SAM does not include physical volume transaction data and describes as only monetary unit but this CGE model deals with energy commodity with physical unit volume. Therefore, the SAM attaches energy input-output table whose structure is
same as the monetary unit SAM.

### 2.2. Sector classification

The SAM sector classification is shown below. The AIM/CGE2.0 default column shows the default classification and the original SAM column shows the classification of the original SAM data. The default classification has 19 non-energy sectors and 19 energy sectors. The commodity is same as in sector one.

Table 2 Sector classification

| M/CGE[basic] |  | Original SAM | ISIC rev3 code | CPC code | GTAP |
| :---: | :---: | :---: | :---: | :---: | :---: |
| default code | Code | Description |  |  |  |
| AGR | AGH | Agriculture | 01 |  | PDR, WHT, GRO, V_F, OSD, C_B, PFB, OCR, CTL, OAP, RMK, WOL |
| FRS | FRS | Forestry | 02 |  | FRS |
| AGR | FSH | Fishery | 05 |  | FSH |
| COA | COA | Coal mining | 101, 102 |  | COA |
| OIL | OIL | Oil mining | 111, 112 (related to oil extraction), 103 |  | OIL |
| GAS | GAS | Gas mining | 111, 112 (related to gas extraction) |  | GAS |
| OMN | OMN | Mineral mining and Other quarrying | 12, 13, 14 |  | OMN |
| FPR | OMT | Meat products |  | 2111, 2112, 2113, 2114, 2161, 2162 | CMT, OMT |
| FPR | VOL | Vegetable oils and fats |  | $\begin{aligned} & 2163,2164,2165,2166,2167,2168, \\ & 2169,217,218 \end{aligned}$ | VOL |
| FPR | MIL | Dairy products |  | 22 | MIL |
| FPR | SGR | Sugar |  | 235 | SGR |
| FPR | OFD | Food products nec |  | 212, 213, 214, 215, 2311, 2312, 2313, 2314, 2315, 2316, 2317, 2318, 232, 233, 234, 236, 237, 239 | PCR, OFD |
| FPR | B_T | Beverages and Tobacco |  | 24, 25 | B_T |
| TEX | TEX | Textiles and Apparel and Leather | 17, 18, 19, 243 |  | TEX, WAP, LEA |
| LUM | LUM | Wood products | 20 |  | LUM |
| PPP | PPP | Paper, Paper products and Pulp | 21, 2211, 2212, 2213, 2219, 222, 223 |  | PPP |
| CRP | CRP | Chemical, Plastic and Rubber products | 241, 242, 25 |  | CRP |
| P_C | P_C | Petroleum and coal refinery | 231, 232, 233 |  | P_C |
| NMM | NMM | Mineral products nec | 26 |  | NMM |
| I_S | I_S | Iron and Steel | 271, 2731 |  | I_S |
| NFM | NFM | Non Ferrous products | 272, 2732 |  | NFM |
| MCH | FMP | Metal products | 28 |  | FMP |
| MCH | OME | Machinery | 29,31,33 |  | OME |
| MCH | ELE | Electric equipment | 30, 32 |  | ELE |
| TRN | MVH | Motor Vehicles | 34 |  | MVH |
| TRN | OTN | Other Transport nes | 35 |  | OTN |
| OMF | OMF | Other Manufacturing | 36,37 |  | OMF |
| E_COL | E_COL | Coal-fired generation without CCS |  |  |  |
| E_OIL | E_OIL | Oil-fired generation without CCS |  |  |  |
| E_GAS | E_GAS | Gas-fired generation without CCS |  |  |  |
| E_NUC | E_NUC | nuclear electric power generation |  |  |  |
| E_HYD | E_HYD | hydroelectric power generation |  |  |  |
| E_GEO | E_GEO | geothermal power generation |  |  |  |
| E_SPV | E_SPV | photovoltaic power generation |  |  |  |
| E_ORN | E_TID | wave-activated power generation |  |  |  |
| E_WIN | E_WIN | wind-power generation |  |  |  |
| E_BIO | E_BIO | biomass-power generation |  |  |  |
| E_ORN | E_ORN | other renewable energy power generation |  |  |  |
| E_COL | C_COL | Coal-fired CHP plant | part of 401 |  | ELY |
| E_OIL | C_OIL | Oil-fired CHP plant | part or 401 |  |  |
| E_GAS | C_GAS | Gas-fired CHP plant |  |  |  |
| E_NUC | C_NUC | nuclear CHP power generation plant |  |  |  |
| E_GEO | C_GEO | geothermatl CHP power generation plant |  |  |  |
| E_BIO | C_BIO | Biomass CHP power generation plant |  |  |  |
| E_ORN | C_ORN | Other renewable energy source CHP power generation plant |  |  |  |
| E_COL | H_COL | Coal heat supply plant |  |  |  |
| E_OIL | H_OIL | Oil heat supply plant |  |  |  |
| E_GAS | H_GAS | Gas heat supply plant |  |  |  |
| E_GEO | H_GEO | Geothermal heat supply plant |  |  |  |
| E_BIO | H_BIO | Biomass heat supply plant |  |  |  |
| E_ORN | H_ORN | Other renewable energy heat supply plant |  |  |  |
| EC_COL |  | Coal-fired generation with CCS |  |  |  |
| EC_OIL |  | Oil-fired generation with CCS |  |  |  |
| EC_GAS |  | Gas-fired generation with CCS |  |  |  |
| EC_BIO |  | biomass-fired generation with CCS |  |  |  |
| GDT | GDT | Gas manufacture distribution | 402, 403 |  | GDT |
| CSS | WTR | Water | 41 |  | WTR |
| CNS | CNS | Construction | 45 |  | CNS |
| CSS | TRD | Trade and wholesale and retail | 50, 51, 52, 55 |  | TRD |
| TRS | TRS | Transport and communications | 60, 61, 62, 63, 64 |  | OTP, OTP, WTP, CMN |
| CSS | FIR | Finance, Insurance, Real estate etc | $65,66,67,70,71,72,73,74$ dwelings |  | OFI, ISR, OBS, DWE |
| CSS | CSS | Community, Social Services nes | $75,80,85,90,91,92,93,94,95,99$ |  | ROS, OSG |

## 3. Model Structure

The AIM/CGE model explains all of the payments recorded in the SAM. The energy commodity transaction and GHG emissions are particulary delt with in detail. The model therefore follows the SAM disaggregation of factors, activities, commodities, and institutions. It is written as a set of simultaneous equations without any objective functions. In addition, there are complement variables to solve the problem like the carbon tax attached to carbon emissions constraint. Therefore Mixed Complementary Problem (MCP) is used to solve them. The equations define the behavior of the different actors. In part, this behavior follows simple rules captured by fixed coefficients. For production and consumption decisions, behavior is captured by nonlinear, first-order optimality conditions - that is, production and consumption decisions are driven by the maximization of profits and utility, respectively. The equations also include a set of constraints that have to be satisfied by the system as a whole but are not necessarily considered by any individual actor, namely macro economic banalce and balance of payment and so on. An overview of this structure is shown in Figure 1.


Figure 1 Overview of AIM/CGE model structure (for one region) ${ }^{3}$

There are four blocks: production, income distribution, final consumption, and market. The first block, production, represents the structure of the production functions. We apply a nested CES function for production activities with multiple nested CES functions. Secondly, incomes are distributed to three institutional sectors: enterprises, government, and households. The government takes in income by collecting taxes. Thirdly, institutions consume goods as final consumption. Government expenditure and capital formation are defined as a constant coefficient function. The LES (Linear Expenditure System) function is used for household consumption.

[^1]Lastly, the CES function is applied to the import of goods and the CET function is applied to the export of goods. A goods-consumption-and-supply equilibrium is achieved for each market.

### 3.1. Activity production and factor markets

Each producer (represented by an activity) is assumed to maximize profits, defined as the difference between revenue earned and the cost of factors and intermediate inputs. Profits are maximized subject to a production technology, the structure of which is shown in Figure 2. At the top level, there is non-energy related GHG emission and conventional inputs. This GHG emission treatment is described in detailed by Hyman ${ }^{4}$. Conventional inputs technology is specified by a Leontief function of the quantities of energy and value-added bundle, aggregate non-energy intermediate input and resource input. Energy and value added bundle is nested by valued added and energy inputs. Value added is itself a constant elasticity of substitution (CES) function of primary factors. The aggregated energy inputs is specified by a CES function of electricity and aggregated fossil fuel inputs. The aggregated fossil fuel input is again nested by the CES function of each fossil fuel input. The aggregate intermediate input is a Leontief function of disaggregated intermediate inputs.


Figure 2 Production structure (Non-energy transformation sectors)

The energy transformation sectors such as the power and petroleum refinery sectors are assumed to be different production functions from the other sectors. The structure is drawn as below. The structure is similar to the non-energy transformation sectors but the energy bundle is different.

[^2]

Figure 3 Production structure (Energy transformation sectors)

Each activity produces one or more commodities according to fixed yield coefficients. A commodity may be produced by more than one activity. In this model, the electricity is produced by many types of power supply technology. The revenue of the activity is defined by the level of the activity, yields, and commodity prices at the producer level.

As part of its profit-maximizing decision, each activity uses a set of factors up to the point where the marginal revenue product of each factor is equal to its factor price. The quantity supplied of each factor is fixed at a certain level. As for the captital, the capital accumulation is taken into account. This level is recursive dynamically decided. An economy-wide wage variable is free to vary to assure that the sum of demands from all activities equals the quantity supplied. Old capital is assumed to be fixed to each sector, which is named the putty-clay assumption. Thus, every sector of old capital has a specific price. On the other hand, other production factors have only one price.

### 3.2. Institutions

In the CGE model, institutions are represented by: households, enterprises, the government, and the rest of the world ${ }^{5}$. The households (disaggregated as in the SAM) receive income from the factors of production (directly or indirectly via the enterprises) and transfers from other institutions. The households use their income to pay direct taxes, save, consume, and make transfers to other institutions. In the basic model version, direct taxes and transfers to other domestic institutions are defined as fixed shares of household income whereas the savings share is flexible for selected households. The income that remains after taxes, savings, and transfers to other institutions is spent on consumption. When the economy has to implement carbnon tax, all of the revenues are assumed to be receipt by the household.

Household consumption covers marketed commodities, purchased at market prices that include commodity taxes. Household consumption is allocated across different commodities according to linear expenditure system (LES) demand functions, derived from maximization of a Stone-Geary utility function.

Instead of being paid directly to the households, factor incomes may be paid to the enterprise. The Enterprise may also receive transfers from other institutions. Enterprise incomes are allocated to direct taxes, savings, and

[^3]transfers to other institutions. Enterprises do not consume. Apart from this, the payments to and from enterprises are modeled in the same way as the payments to and from households. The government collects taxes and receives transfers from other institutions. In the basic model version, all taxes are at fixed ad valorem rates.

The government uses this income to purchase commodities for its consumption and for transfers to other institutions. Government consumption is fixed in real (quantity) terms whereas government transfers to domestic institutions (households and enterprises) are CPI-indexed. Government savings (the difference between government income and spending) is a flexible residual.

The saving rate made by all institution is fixed coefficient also.
The final institution is the rest of the world. As noted, transfer payments between the rest of the world and domestic institutions and factors are all fixed in foreign currency. Foreign savings (or the current account deficit) is the difference between foreign currency spending and receipts. Commodity trade with the rest of the world is discussed in the next section.

### 3.3. Commodity market

All commodities (domestic output and imports) enter markets. Domestic output may be sold in the market. For marketed output, the first stage in the chain consists of generating aggregated domestic output from the output of different activities of a given commodity. These outputs are imperfectly substitutable as a result of, for example, differences in timing, quality, and distance between the locations of activities. A CES function is used as the aggregation function ${ }^{6}$. The demand for the output of each activity is derived from the problem of minimizing the cost of supplying a given quantity of aggregated output subject to this CES function. Activityspecific commodity prices serve to clear the implicit market for each disaggregated commodity.

In the next, aggregated domestic output is allocated between exports and domestic sales on the assumption that suppliers maximize sales revenue for any given aggregate output level, subject to imperfect transformability between exports and domestic sales, expressed by a constant elasticity of transformation (CET) function. In the international markets, export demands are infinitely elastic at given world prices. The price received by domestic suppliers for exports is expressed in domestic currency and adjusted for export taxes (if any). If the commodity is not exported, total output is passed to the domestic market.

Domestic demand is made up of the sum of demands for household consumption, government consumption, investment (the determination of which is discussed below), and intermediate inputs.

To the extent that a commodity is imported, all domestic market demands are for a composite commodity made up of imports and domestic output, the demands for which are derived on the assumption that domestic demanders minimize cost subject to imperfect substitutability. This is also captured by a CES aggregation function which is so-called Armington assumption. Total market demand is directed to imports for commodities that lack domestic production and to domestic output for non-imported commodities. The derived demands for imported commodities are met by international supplies that are infinitely elastic at given world prices. The import prices paid by domestic demanders also include import tariffs (at fixed ad valorem rates) and the cost of a fixed quantity of transactions services per import unit, covering the cost of moving the commodity from the border to the demander. Similarly, the derived demand for domestic output is met by domestic suppliers.

[^4]The AIM/CGE model treats the volume of energy commodities ${ }^{7}$ as energy units, though usual CGE model do not as well. In the calibration procedure, the energy unit transaction data is used.
Although energy commodities must satisfy the energy balance condition, CES and CET function make the balanced condition. Therefore, we apply specific formulas to the energy commodities market transaction, which is a sort of logit function. We determine the share of imported and domestic consumption by the ratio of the current price to previous year's price. The share of exported and domestic consumption, and the share of the same commodity production are determined as well as the import composition. The share is controlled by the ratio of previous year's and calculation year price with an elasticity parameter. For example, if import price is increased over that of domestic products, the share of import commodity would be decreased.

### 3.4. Macro economic balances

The CGE model includes three macroeconomic balances: the (current) government balance, the external balance (the current account of the balance of payments, which includes the trade balance), and the SavingsInvestment balance.

For the government balance, the closure is that government savings (the difference between current government revenues and current government expenditures) is a flexible residual while all tax rates are fixed.

For the external balance, which is expressed in foreign currency, the closure is that the real exchange rate is flexible while foreign savings (the current account deficit) is fixed. Given that all other items are fixed in the external balance (transfers between the rest of the world and domestic institutions), the trade balance is also fixed.

For the Savings-Investment balance, the closure is investment-driven. Real investment quantities are fixed. In order to generate savings that equal the cost of the investment bundle, the base-year savings rates of selected nongovernment institutions are adjusted by the same number of percentage points. Implicitly, it is assumed that the government is able to implement policies that generate the necessary private savings to finance the fixed real investment quantities.

### 3.5. Air pollutants and GHG emissions

The CGE model includes air pollutants and GHG emissions module. The emission gases treated in this model are $\mathrm{CO}, \mathrm{NH}_{3}, \mathrm{NMVOC}, \mathrm{NOx}, \mathrm{SO}_{2}, \mathrm{BC}, \mathrm{OC}, \mathrm{CO}_{2} \mathrm{CH}_{4}$ and $\mathrm{N}_{2} \mathrm{O}$. The emission sources are classified into two groups. (1) One is related to fuel combustion and this kind of emission is proportional to the energy consumption. (2) The other is related to the activity level, e.c. $\mathrm{CO}_{2}$ emission from cement production, and this kind of emission is proportional to the activity level. The emission sources and their groups are shown in Table 3. In addition, biomass consumption is also introduced in this model to estimate the air pollutants.

[^5]Table 3 Emission sources

| Emission source related to activity level |  | Emission source related to fuel combustion <br> IPCC category |  |
| :--- | :--- | :--- | :--- |
| Explanation | IPCC category | Explanation |  |
| 2A | Production of minerals | 1 Ala | Public electricity and heat production |
| 2A1 | Cement production | 1 Albc | Other Energy Industries |
| 2A2 | Lime production | 1 A 2 | Manufacturing Industries and Construction |
| 2B | Production of chemicals | 1A3a | Domestic aviation |
| 2C | Production of metals | 1A3b | Road transportation |
| 2D | Production of pulp/paper/food/drink | 1A3c | Rail transportation |
| 2G | Non-energy use of lubricants/waxes (CO2) | $1 \mathrm{A3d}$ | Inland navigation |
| 3A | Solvent and other product use: paint | 1A3e | Other transportation |
| 3B | Solvent and other product use: degrease | 1 A 4 | Residential and other sectors |
| 3C | Solvent and other product use: chemicals |  |  |
| 3D | Solvent and other product use: other |  |  |
| 4A | Enteric fermentation |  |  |
| 4B | Manure management |  |  |
| 4C | Rice cultivation |  |  |
| 4D1 | Direct soil emissions |  |  |
| 4D2 | Manure in pasture/range/paddock |  |  |
| 4D3 | Indirect N2O from agriculture |  |  |
| 4D4 | Other direct soil emissions |  |  |
| 4E | Savanna burning |  |  |
| 4F | Agricultural waste burning |  |  |
| 5A | Forest fires |  |  |
| 5C | Grassland fires |  |  |
| 5F2 | Forest Fires-Post burn decay |  |  |
| 6A | Solid waste disposal on land |  |  |
| 6B | Wastewater handling |  |  |
| 6C | Waste incineration |  |  |
| 6D | Other waste handling |  |  |

## 4. Mathematical statement

This chapter presents the mathematical model statement equation by equation. In its mathematical form, the CGE model is a system of simultaneous, nonlinear equations. The model is square - that is, the number of equations is equal to the number of variables. In this class of models, this is a necessary (but not a sufficient) condition for the existence of a unique solution. The chapter divides the equations into six blocks: prices, production and trade, institutions, international trade ${ }^{8}$, energy and $\mathrm{CO}_{2}$ emissions, and system constraints. New items (sets, parameters, and variables) are defined the first time that they appear in the equations. Table 4 summarizes the notational principles. Parameter and variable names are chosen to facilitate interpretation; most importantly, commodity and factor quantities start with $q$, commodity prices with $p$, and factor prices with $w$.

Table 4 Notational principles

| Item | Notation |
| :--- | :--- |
| Endogenous variables | Upper-case Latin letters without a bar |
| Exogenous variables | Upper-case Latin letters with a bar |
| Paramters | Lower-case Latin letters (with or without a bar) or lower-case Greek letters (with <br> or without superscripts) |
| Set indices | Lower-case Latin letters as subscripts to variables and paramtres |

### 4.1. Price block

The price system of the model is rich, primarily because of the assumed quality differences among commodities of different origins and destinations (exports, imports, and domestic outputs used domestically). The price block consists of equations in which endogenous model prices are linked to other prices (endogenous or exogenous) and to non-price model variables.

## Import Price

$$
\begin{equation*}
P M_{r, c}=P W M_{c} \cdot \operatorname{dis}_{-} i m p_{r, c} \cdot\left(1+t m_{r, c}\right) \cdot E X R_{r}, \quad \forall c \in C M \tag{4.1}
\end{equation*}
$$

$r \in R$ : a set of regions,
$c \in C$ : a set of commodities (also referred to as $c^{\prime}$ and $C^{\prime}$ ),
$c \in C M(\subset C)$ : a set of imported commodities,
$P W M_{c}$ : world import price (c.i.f) of commodity c ,
$P M_{r, c}$ : composite commodity price (including import tax and transaction costs),
dis_imp $_{r, c}:$ price difference of the import commodity $c$,
$t m_{r, c}$ : import tariff rate,
$E X R_{r}$ : exchange rate country $r$.

The import price is the price paid by domestic users for imported commodities (exclusive of the sales tax). Equation(4.1) states that it is a transformation of the world price of these imports, considering the exchange rate and import tariffs plus transaction costs (the cost of trade inputs needed to move the commodity from the border to the demander) per unit of the import. The domain of the equation is the set of imported commodities (a subset of the commodity set). The model includes one equation like (4.1) for every imported commodity.

[^6]Note that the notational principles make it possible to distinguish between variables (upper-case Latin letters) and parameters (lower-case Latin letters). This means that the exchange rate and the domestic import price are flexible, while the tariff rate and the world import price are fixed. The fixedness of the world import price stems from the "small-country" assumption. That is, for all its imports, the assumed share of world trade for the modeled country is so small that it faces an infinitely elastic supply curve at the prevailing world price.

## Export Price

$$
\begin{equation*}
P E_{r, c}=P W E_{c} \cdot d i s_{-} \exp _{r, c} \cdot\left(1-t e_{r, c}\right) \cdot \overline{E X R_{r}}, \quad \forall r \in R, c \in C E \tag{4.2}
\end{equation*}
$$

$c \in C E(\subset C)$ : a set of exported commodities (with domestic production),
$P E_{r, c}$ : export price of commodity $c$,
$P W E_{c}$ : f.o.b. export world price,
dis_exp ${ }_{r, c}$ : price difference of the export commodity $c$,
$t e_{r, c}$ : export tax rate.

The export price is the price received by domestic producers when they sell their output in export markets. This equation is similar in structure to the import price definition. The main difference is that the tax reduces the price received by the domestic producers of exports (instead of adding to the price paid by domestic demanders of imports). The domain of the equation is the set of exported commodities, all of which are produced domestically.

## Demand Price of Domestic Non-traded Goods

$$
\begin{equation*}
P D D_{r, c}=P D S_{r, c}, \quad \forall r \in R, c \in C D \tag{4.3}
\end{equation*}
$$

$c \in C D(\subset C)$ : a set of commodities with domestic sales of domestic output, $P D D_{r, c}$ : demand price for commodity produced and sold domestically, $P D S_{r, c}$ : supply price for commodity produced and sold domestically.

Equation (4.3) defines the demand prices as the supply price.

## Absorption

$$
\begin{equation*}
P Q_{r, c} \cdot Q Q_{r, c}=P D D_{r, c} \cdot Q D_{r, c}+P M_{r, c} \cdot Q M_{r, c}, \quad \forall r \in R, c \in(C D \cup C M) \tag{4.4}
\end{equation*}
$$

$P Q_{r, c}$ : composite commodity price excluding sales tax
$Q Q_{r, c}$ : quantity of goods supplied to domestic market (composite supply),
$Q D_{r, c}$ : quantity sold domestically of domestic output,
$Q M_{r, c}$ : quantity of imports of commodity.

Absorption is total domestic spending on a commodity at domestic demander prices. Equation (4.4) defines it exclusive of the sales tax. Absorption is expressed as the sum of spending on domestic output and imports at the demand prices, $P D D$ and $P M$. The prices $P D D$ and $P M$ include the cost of trade inputs but exclude the commodity sales tax.

The equation as a whole applies to all commodities that are imported and/or have domestic sales of domestic output (the union of the sets $C D$ and $C M$ ). It does not apply to commodities for which the entire output volume is
exported. Each of the two terms on the right-hand side applies only to its relevant set ( $C D$ and $C M$, respectively). In the GAMS code, $P M$ and $Q M$ are fixed at zero for commodities that are not elements in the set $C M$; similarly $P D D$ and $Q D$ are fixed at zero for commodities that are not elements in the set $C D$. This approach is followed throughout: all variables that should be excluded from the model are fixed at zero.

## Commodity market monetary balance

$$
\begin{equation*}
P Q_{r, c} \cdot Q Q_{r, c}=P Q D_{r, c} \cdot\binom{\sum_{a \in A} p f d q_{r, c, a} \cdot Q I N T_{r, c, a}+\sum_{h \in H} p f d q_{r, c, h} \cdot Q H_{r, c, h}}{+p f d q_{r, c, ", g o v "} \cdot Q G_{r, c}+p f d q_{r, c,, " S-I^{\prime \prime}} \cdot Q I N V_{r, c}}, \quad \forall r \in R, c \in C X \tag{4.5}
\end{equation*}
$$

$P Q D_{r, c}$ : composite commodity price excluding sales tax,
$p f d q_{r, c, a c}$ : price differences of commodity price among inputs sectors,
QINT $r_{r, c, a}$ : quantity of commodity $c$ as intermediate input to activity $a$,
$Q H_{r, c, h}$ : quantity of consumption of marketed commodity $c$ for household $h$,
$Q G_{r, c}$ : government consumption demand for commodity,
$Q I N V_{r, c}$ : quantity of fixed investment demand for commodity.

## Marketed Output with stock change

$$
\begin{equation*}
Q X 2_{r, c}=Q X_{r, c}+\text { stch }_{r, c}, \quad \forall r \in R, c \in C X \tag{4.6}
\end{equation*}
$$

$Q X_{r, c}$ : aggregate marketed quantity of domestic output of commodity,
$Q X 2_{r, c}$ : aggregate marketed quantity of domestic output of commodity including stock change, stch $h_{r, c}$ : stock change of commodity c (positive).

## Marketed Output Value with stock change

$$
\begin{equation*}
P X 2_{r, c} \cdot Q X 2_{r, c}=P X_{r, c} \cdot Q X_{r, c}, \quad \forall r \in R, c \in C X \tag{4.7}
\end{equation*}
$$

$P X_{r, c}$ : aggregate producer price for commodity,
$P X 2_{r, c}$ : aggregate producer price for commodity including stock change effects.

The above 2 equations describe the relataionship between output and stock changes, and those of market value.

## Marketed Output Value

$$
\begin{equation*}
P X 2_{r, c} \cdot Q X 2_{r, c}=P D S_{r, c} \cdot Q D_{r, c}+P E_{r, c} \cdot Q E_{r, c}, \quad \forall r \in R, c \in C X \tag{4.8}
\end{equation*}
$$

$c \in C X(\subset C)$ : a set of commodities with domestic output,
$Q E_{r, c}$ : quantity of exports.

For each domestically produced commodity, the marketed output value at producer prices is stated as the sum of the values of domestic sales and exports. Domestic sales and exports are valued at the prices received by the suppliers, $P D S$ and $P E$, both of which have been adjusted downwards to account for the cost of trade inputs.

The domain limitation to domestically produced commodities (the elements in the set $C X$ ) has to be stated explicitly given that the model includes a category of imported commodities without domestic production. The domestic part applies only to elements in $C D$ whereas the export part applies only to elements in $C E . P X$ and $Q X$ are referred to as "aggregate" values since they may apply to an aggregation of output from different domestic
producers of the same commodity. By dividing through by $Q X 2$, this equation could be rewritten as an explicit definition of $P X$.

## Activity Price

$$
\begin{equation*}
P A_{r, a} \cdot Q A_{r, a} \cdot\left(1+\text { RQUOQA }_{r, a}\right)=\sum_{c \in C} P X A C_{r, a, c} \cdot Q X A C_{r, a, c}, \quad \forall r \in R, a \in A \tag{4.9}
\end{equation*}
$$

$a \in A$ : a set of activities,
$P A_{r, a}$ : activity price (gross revenue per activity unit),
$Q A_{r, a}$ : quantity (level) of activity,
$P X A C_{r, a, c}$ : producer price of commodity $c$ for activity $a$,
$Q X A C_{r, a, c}$ : marketed output quantity of commodity $c$ from activity $a$, $R Q U O Q A_{r, a}$ : Shadow subsidies of the fixed activity level.

The gross revenue per activity unit, the activity price, is the return from selling the output or outputs of the activity, defined as yields per activity unit multiplied by activity-specific commodity prices, summed over all commodities. This allows for the fact that activities may produce multiple commodities.

If the acticity level is fixed, the complementary subsidies are generated as RQUOQA.

## Aggregate Non-energy Intermediate Input Price

$$
\begin{equation*}
\text { PINTA }_{r, a}=\sum_{c \in C N E N} P Q_{r, c} \cdot p f d q_{r, c, a} \cdot Q I N T_{r, c, a}\left(1+t q d_{r, c, a}\right) \cdot i c a_{r, c, a}, \quad \forall r \in R, a \in A \tag{4.10}
\end{equation*}
$$

$c \in C N E N$ : a set of non-energy commodities, PINTA $_{r, a}$ : aggregate intermediate input price for activity $a$, QINTA $_{r, a}$ : quantity of aggregate intermediate input,
$t q_{r, c, a c}$ : rate of sales tax (as share of composite price inclusive of sales tax). Suffix ac includes activity $a$ and institution $i$.

The activity-specific aggregate intermediate input price shows the cost of disaggregated intermediate inputs per unit of aggregate intermediate input. It depends on composite commodity prices and intermediate input coefficients, which show the quantity of input commodity $c$ per unit of aggregate intermediate input (not per unit of output).

Activity Revenue and Costs (Non-energy transformation sector)

$$
\begin{align*}
& P A_{r, a} \cdot\left(1-t a_{r, a}\right) \cdot Q A_{r, a}=\text { PVAE }_{r, a} \cdot Q V A E_{r, a}+\text { PINTA }_{r, a} \cdot \text { QINTA }_{r, a}+\text { PRES }_{r, a} \cdot Q R E S_{r, a}  \tag{4.11}\\
& \quad+G H G C A_{-} \text {NENE }_{r, a}+V R E N C A P_{r, a} \cdot Q A_{r, a}+\sum_{\text {emcm } \in E M C M} Q R E D_{r, e m c m, a}, \quad \forall r \in R, a \in A C E S
\end{align*}
$$

## Activity Revenue and Costs (Energy transformation sector)

$$
\begin{align*}
P A_{r, a} \cdot\left(1-t a_{r, a}\right) \cdot Q A_{r, a}= & P V A_{r, a} \cdot Q V A_{r, a}+\text { PINTA }_{r, a} \cdot \text { QINTA }_{r, a}+\text { PENE }_{r, a} \cdot Q E N E_{r, a} \\
+ & +P R E S_{r, a} \cdot Q R E S_{r, a}+G H G C A_{-} \text {NENE }_{r, a}+V R E N C A P_{r, a} \cdot Q A_{r, a} \sum_{\text {emcmeEMCM }} Q R E D_{r, e m c m, a}, \quad \forall r \in R, a \in A L E O \tag{4.12}
\end{align*}
$$

$a \in \operatorname{ACES}(\subset A)$ : a set for non-energy transformation,
$a \in A L E O(\subset A)$ : a set for energy transformation,
$t a_{r, a}:$ tax rate for activity,
$P V A E_{r, a}$ : price of (aggregate) energy and value-added bundle (non-energy transformation sector),
$Q V A E_{r, a}$ : quantity of (aggregate) energy and value-added bundle (non-energy transformation sector),
$P V A_{r, a}$ : price of (aggregate) value-added,
$Q V A_{r, a}$ : quantity of (aggregate) value-added,
$P E N E_{r, a}$ : price of (aggregate) energy input,
QENE $E_{r, a}$ : quantity of (aggregate) energy input,
GHGCA_NENE $E_{r, a}$ : GHG emission cost related biomass burning and CCS negative emissions of activity $a$ in region $r$,

VRENCAP $_{r, a}$ : Rent of electricity capacity activity $a$ in region $r$,
$P_{R E S}^{r, a}$ : price of resource input,
$Q R E S_{r, a}$ : quantity of resource input,
$Q R E D_{r, e m c m, a}$ : input of counter emission reduction counter measures of activity $a$ and measure emcm, emcm $\in E M C M$ : a set of emission reduction counter measures (CCS).

Activity cost is different between the energy transformation sector and non-energy transformation sector as shown in the previous chapter. The difference is energy and value added treatment. For each activity, total revenue net of taxes is fully exhausted by payments for value-added and intermediate inputs. Given the above definitions of PA, PVA, PENE, PINTA, PENE and PRES, equation (4.11) implicitly defines the value-added price, $P V A$.

If we had GHG emission constraints, each activity is levied on to its GHG emissions. The GHG emission cost related with biomass burning is represented as GHGCA_NENE. GHG cost related to energy consumption is included in energy cost.

Moreover, sometimes, activity level is constrained by political decisions; for example, nuclear power plant construction is not determined only by economic rationality. In such cases, a rent is absorbed by the activity as VRENCAP.

The emission reduction counter measures for CCS technology cost is QRED.

## Resource Input Price

$$
\begin{equation*}
P A_{r, a}=P R E S_{r, a}, \quad \forall r \in R, a \in A \tag{4.13}
\end{equation*}
$$

Resource inputs price is assumed equal as the activity price.

## Consumer Price Index

$c w t s_{r, c}$ : weight of commodity c in the consumer price index, $C P I_{r}$ : consumer price index (exogenous variable).

## Producer Price Index for Nontraded Market Output

$$
\begin{equation*}
D P I_{r}=\sum_{c \in C} P D S_{r, c} \cdot d w t s_{r, c} \quad \forall r \in R \tag{4.15}
\end{equation*}
$$

$d w t s_{r, c}$ : weight of commodity $c$ in the producer price index,
$D P I_{r}$ : producer price index for domestically marketed output.

Equations (4.14) and (4.15) define the consumer price index and the producer price index for domestically marketed output. The CPI is fixed and functions as the numéraire in the basic model version; alternatively, the DPI may be fixed. A numéraire is required since the model is homogeneous of degree zero in prices. A doubling of the value of the numéraire would double all prices but leave all real quantities unchanged. All simulated price and income changes should be interpreted as changes vis-à-vis the numéraire price index.

## Export Price Index

$$
\begin{equation*}
E P I_{r}=\sum_{c \in C} P E_{r, c} \cdot \text { ewts }_{r, c} \quad \forall r \in R \tag{4.16}
\end{equation*}
$$

ewts $_{r, c}$ : weight of commodity c in the export price index,
$E P I_{r}$ : export price index.

Import Price Index

$$
\begin{equation*}
M P I_{r}=\sum_{c \in C} P M_{r, c} \cdot m w t s_{r, c} \quad \forall r \in R \tag{4.17}
\end{equation*}
$$

$m w t s_{r, c}$ : weight of commodity c in the import price index,
$M P I_{r}$ : import price index.

## Governmental consumption Price Index

$$
\begin{equation*}
G P I_{r}=\sum_{c \in C} P Q D_{r, c} \cdot d f p q_{r, c, \text { "goo" }} \cdot\left(1+t q d_{r, c, " g o v "}\right) \cdot g w t s_{r, c} \quad \forall r \in R \tag{4.18}
\end{equation*}
$$

gwts $_{r, c}$ : weight of commodity c in the governement price index,
$G P I_{r}$ : Governement price index.

## Capital Formation Price Index

$$
\begin{equation*}
I P I_{r}=\sum_{c \in C} P Q D_{r, c} \cdot d f p q_{r, c, " s-I^{\prime \prime}} \cdot\left(1+t q d_{r, c, " g o v "}\right) \cdot i w t s_{r, c} \quad \forall r \in R \tag{4.19}
\end{equation*}
$$

iwts $_{r, c}$ : weight of commodity c in the capital formation price index,
$I P I_{r}$ : Capital formation price index.

Export, import, governmental consumption and capital formation price indices are defined as aboves.

### 4.2. Production block

The production and trade block covers four categories: domestic production and input use; the allocation of domestic output to home consumption, the domestic market, and exports; the aggregation of supply to the domestic market (from imports and domestic output sold domestically); and the definition of the demand for trade inputs that is generated by the distribution process.

Production is carried out by activities that are assumed to maximize profits subject to their technology, taking prices (for their outputs, intermediate inputs, and factors) as given. In other words, it acts in a perfectly
competitive setting. The CGE model includes the first-order conditions for profit-maximization by producers.

## Leontief Technology: Demand for Aggregate Value-Added (energy transformation sector)

$$
\begin{equation*}
\text { QVA }_{t, a}=i v a_{r, a} \cdot Q A_{t, a}, \quad \forall r \in R, a \in A L E O \tag{4.20}
\end{equation*}
$$

## Leontief Technology: Demand for Aggregate energy Input (energy transformation sector) <br> $$
\begin{equation*} Q E N E_{r, a}=\text { iena }_{r, a} \cdot Q A_{r, a}, \quad \forall r \in R, a \in A L E O \tag{4.21} \end{equation*}
$$

## Energy and Value added Bundle (non-energy transformation sector)

$$
\begin{equation*}
Q V A E_{r, a}=i v a e_{r, a} \cdot Q A_{r, a}, \quad \forall r \in R, a \in A C E S \tag{4.22}
\end{equation*}
$$

## Leontief Technology: Demand for Aggregate Non-energy Intermediate Input

$$
\begin{equation*}
\text { QINTA }_{r, a}=\text { inta }_{r, a} \cdot Q A_{r, a}, \quad \forall r \in R, a \in A \tag{4.23}
\end{equation*}
$$

## Leontief Technology: Demand for Resource Input

$$
\begin{equation*}
\text { QRES }_{r, a}=\text { ires }_{r, a} \cdot Q A_{r, a}, \quad \forall r \in R, a \in A \tag{4.24}
\end{equation*}
$$

iva $a_{r, a}$ : quantity of value-added per activity unit,
iena $r_{r, a}$ : quantity of aggregate energy input per activity unit.
ivae $_{r, a}$ : quantity of value-added energy composite per activity unit,
inta $_{r, a}$ : quantity of aggregate non-energy intermediate input per activity unit.
ires $_{r, a}$ : quantity of aggregate resource input per activity unit.

As for the energy transformation sectors, a Leontief function at the top of the conventional inputs are equations (4.20), (4.21), (4.23) and (4.24) where the demands for value-added, the aggregate intermediate inputs, the aggregate energy input and resource inputs are defined as Leontief functions of the activity level. For the non-energy transformation sectors, the equation (4.20), (4.21) are relaced by equation (4.22).

## Energy and Value-Added composite

$$
\begin{equation*}
Q V A E_{r, a}=\alpha_{r, a}^{v a e} \cdot\left(\delta_{r, a}^{v v e}\left(\frac{Q E N E_{r, a}}{1-A D E E I_{r, a}}\right)^{-p_{r, a}^{v a e}}+\left(1-\delta_{r, a}^{v a e}\right) Q V A_{r, a}^{-p_{a, a}^{\text {poe }}}\right)^{-\frac{1}{p_{r, a}}}, \quad \forall r \in R, a \in A C E S \tag{4.25}
\end{equation*}
$$

## Energy and Value-added Input CES Technology: Energy - Value added -Input Ratio

$$
\begin{equation*}
\frac{\left(\frac{Q^{2} N E_{r, a}}{1-A D E E I_{r, a}}\right)}{Q V A_{r, a}}=\left(\frac{\delta_{r, a}^{\text {vae }}}{1-\delta_{r, a}^{\text {vae }}} \cdot \frac{P E N E_{r, a}}{P V A_{r, a}}\right)^{\frac{1}{1+p_{r, a e}^{w a e}}}, \quad \forall r \in R, a \in A C E S \tag{4.26}
\end{equation*}
$$

$\alpha_{r, a}^{v a e}$ : efficiency parameter in the CES energy and value-added function,
$\delta_{r, a}^{v a e}$ : CES energy and value-added function share parameter in activity a,
$\rho_{r, a}^{v a e}$ : CES energy and value-added function exponent,
$A D E E I_{r, a}$ : Additional energy efficiency improvement coefficient.

## Energy and Value-Added composite balance

$$
\begin{equation*}
Q V A E_{r, a} \cdot P V A E_{r, a}=\text { QENE }_{r, a} \cdot P E N E_{r, a}+Q V A_{r, a} \cdot P V A_{r, a}, \quad \forall r \in R, a \in A C E S \tag{4.27}
\end{equation*}
$$

## Additional energy efficiency improvement (Industry)

$$
\begin{equation*}
A D E E I_{r, a}=1-\left(\frac{P E N E_{r, a}}{P E N E_{r, a}^{\text {buu }}}\right)^{-\sigma_{r, a}^{f f}}, \quad \forall r \in R, a \in A C E S \tag{4.28}
\end{equation*}
$$

PENE ${ }_{r, a}^{\text {bau }}$ : Energy price (BaUcase)
Non-energy transformation sectors determine their energy and value added inputs as shown previously. CES function is applied to these inputs. If the climate mitigation is taken into account, the additional energy improvement caused by the energy price increase is defined as 1 - ADEEI. This energy improvement is calculated by the energy price relative to that of BaU case.

If there were an industry using no energy, the value added is defined as below.

## Energy and Value-Added composite (Non energy use sector)

$$
\begin{equation*}
Q V A E_{r, a}=Q V A_{r, a}, \quad \forall r \in R, a \in A C E S \tag{4.29}
\end{equation*}
$$

## Value-Added and Factor Demands

$$
\begin{equation*}
\left.Q V A_{r, a}=\alpha_{r, a}^{v a} \cdot\left(\sum_{f \in F} \delta_{r, a}^{v a} \cdot Q F_{r, f, a}\right)^{-\rho_{r, a}^{v a}}\right)^{-\frac{1}{p_{r, a}^{m}}}, \quad \forall r \in R, a \in A \tag{4.30}
\end{equation*}
$$

## Factor Demand

$$
\begin{align*}
& W F_{r, f} \cdot \text { WFDIST }_{r, f, a}=P V A_{r, a} \cdot\left(1-t v a_{r, a}\right) \cdot Q V A_{r, a} \cdot\left(\sum_{f \in F} \delta_{r, a}^{v a} \cdot Q F_{f r, a}^{-p_{r, a}^{m a}}\right)^{-1} \cdot \delta_{r, a}^{v a} \cdot Q F_{r, f, a}^{-\rho_{r, a}^{m a}-1},  \tag{4.31}\\
& \forall r \in R, a \in A, f \in F
\end{align*}
$$

$f \in F\left(=F^{\prime}\right)$ : a set of factors,
$t v a_{r, a}$ : rate of value-added tax for activity a,
$\alpha_{r, a}^{v a}$ : efficiency parameter in the CES value-added function,
$\delta_{r, a}^{v a}$ : CES value-added function share parameter for factor f in activity a,
$\rho_{r, a}^{v a}$ : CES value-added function exponent,
$Q F_{r, f, a}$ : quantity demanded of factor f from activity a,
$W F_{r, f}$ : average price of factor,
$W^{W} D I S T_{r, f a}$ : factor price distortion factor for factor f in activity $a$.

Equation (4.30) states that, for each activity, the quantity of value-added is a CES function of disaggregated factor quantities. According to equation (4.31), activities demand factors at the point where the marginal cost of each factor (defined on the left-hand side as the activity-specific factor price) is equal to the marginal revenue product (net of intermediate input costs) of the factor. In the GAMS code, the domain of equation (4.31) is limited to the factor-activity combinations that appear in the base-year SAM. Similar domain restrictions apply to other equations that are defined over mappings between multiple indices (for example, equation (4.35)). The exponent $\rho^{v a}$ is a transformation of the elasticity of factor substitution: the higher this elasticity, the smaller the
value of $\rho^{v a}$ and the larger the optimal change in the ratios between different factor quantities in response to changes in relative factor prices. The fact that the average factor price is an endogenous variable while the activity-specific "wage-distortion" factor is exogenous reflects the treatment of factor markets.

## Capital aggregation: CES Function

$$
\begin{equation*}
Q F_{r, " c c a p ", a}=\alpha_{r, a}^{f} \cdot\left(\delta_{r, a}^{f} \cdot Q F_{r, " n c a p ", a} \rho_{r, a}^{f}+\left(1-\delta_{r, a}^{f}\right) \cdot Q F_{r, " c a p ", a}-\rho_{t, a}^{f}\right)^{-\frac{1}{\rho_{r, a}^{t}}}, \quad \forall r \in R, a \in A \tag{4.32}
\end{equation*}
$$

## Capital aggregation of CES Technology: old and new capital - Input Ratio

$$
\begin{equation*}
\frac{Q F_{r, " \text { "copp",a }}}{Q F_{r, " c a p ", a}}=\left(\frac{\delta_{r, a}^{f}}{1-\delta_{r, a}^{f}} \cdot \frac{W F_{r, " c a p} \cdot W F D I S T_{r, " c a p ", a}}{W F_{r, " n c o p "} \cdot W F D I S T_{r, " n c a p ", a}}\right)^{\frac{1}{1+\rho f_{r, a}^{f}}}, \quad \forall r \in R, a \in A \tag{4.33}
\end{equation*}
$$

## Capital Input Costs

$$
\begin{equation*}
Q F_{r, " c c a p ", a} \cdot \text { WF }_{r, " c c a p} \text { " } \text { WFDIST }_{r, " c c a p ", a}=\sum_{f \in F C A P} Q F_{r, f, a} \cdot \text { WF }_{r, f} \cdot \text { WFDIST }_{r, f, a}, \quad \forall r \in R, a \in A \tag{4.34}
\end{equation*}
$$

$f \in F C A P(=F):$ A set of capital (new and old; "ncap" and "cap")
$\alpha_{r, a}^{f}$ : efficiency parameter in the CES capital input function,
$\delta_{r, a}^{f}: \mathrm{CES}$ capital input function share parameter,
$\rho_{r, a}^{f}$ : CES capital input function exponent.

Capital vintage is taken into account and the old and new capitals are aggregated by the CES function.

## Disaggregated Intermediate Input Demand

$$
\begin{equation*}
\text { QINT }_{r, c, a}=i^{c} a_{r, c, a} \cdot \text { QINTA }_{r, a}, \quad \forall r \in R, a \in A, c \in C N E N \tag{4.35}
\end{equation*}
$$

ica $_{r, c, a}$ : quantity of $c$ per unit of aggregate intermediate input $a$.

For each activity, the demand for disaggregated intermediate inputs is determined via a standard Leontief formulation as the level of aggregate intermediate input use times a fixed intermediate input coefficient.

## Energy Input Technology: CES Function

$$
\begin{equation*}
Q E N E_{r, a}=\alpha_{r, a}^{e l} \cdot\left(\delta_{r, a}^{e l} \cdot Q I N T_{r, e l y ", a} p_{r, a}^{e, a}+\left(1-\delta_{r, a}^{e l}\right) \cdot Q F F L_{r, a}^{-\rho_{r, a}^{e, a}}\right)^{-\frac{1}{\rho_{r, a}^{e l}}}, \quad \forall r \in R, a \in A C E S \_E N E \tag{4.36}
\end{equation*}
$$

## Energy Input CES Technology: Electricity - Fossil Fuel -Input Ratio

$$
\begin{equation*}
\left.\frac{Q I N T_{r, \text { ely",a }}}{Q F F L_{r, a}}=\left(\frac{\delta_{r, a}^{e l}}{1-\delta_{r, a}^{e l}} \cdot \frac{P Q D_{r, " e l y} " \cdot\left(1+t q d_{r, " e l y, a}\right.}{P F F L_{r, a}}\right)\right)^{\frac{1}{1+\rho_{r, a}^{e l}}}, \quad \forall r \in R, a \in A C E S_{-} E N E \tag{4.37}
\end{equation*}
$$

## Energy Input Costs

$$
\begin{equation*}
P E N E_{r, a} \cdot Q E N E_{r, a}=P Q D_{r, \text { ely",a }} \cdot\left(1+\text { tqd }_{r, \text { ell",a }}\right) \cdot Q I N T_{r, \text { "ely",a }}+P F F L_{r, a} \cdot Q F F L_{r, a}, \quad \forall r \in R, a \in A C E S \_E N E \tag{4.38}
\end{equation*}
$$

$P F F L_{r, a}$ : price of (aggregate) fossil fuel input,
$Q F F L_{r, a}$ : quantity of (aggregate) fossil fuel input,
$a \in A C E S \_E N E(\subset A):$ a set of activities with a CES function at energy nest,
$\alpha_{r, a}^{e l}$ : efficiency parameter in the CES energy input function,
$\delta_{r, a}^{e l}$ : CES energy input function share parameter,
$\rho_{r, a}^{e l}$ : CES energy input function exponent.

Activities excluding energy transformation sector, which is specified by a set of ACES_ENE, have CES energy input technology. The energy input is disaggregated into electricity and fossil fuel. The exponent, $\rho_{r, a}^{a}$ is a transformation of the elasticity of substitution between electricity and the aggregate fossil fuel input: the higher this elasticity, the smaller the value of $\rho_{r, a}^{e l}$ and the larger the optimal change in the ratios between the quantities of electricity and the fossil fuel input aggregate in response to changes in their relative prices.

## Fossil fuel consumption and Its allocation

$$
\begin{equation*}
\left.Q F F L_{r, a}=\alpha_{r, a}^{f f} \cdot\left(\sum_{c \in C F F} \delta_{r, c, a}^{f f} \cdot Q I N T_{r, c, a}\right)^{-\rho_{r, a}^{f f}}\right)^{-\frac{1}{p_{r, a}^{f t}}}, \quad \forall r \in R, a \in A C E S_{-} E N E \tag{4.39}
\end{equation*}
$$

## First-Order Condition for Fossil Fuel Consumption

$$
\begin{align*}
& P Q D_{r, c} \cdot d f p q_{r, c, a} \cdot\left(1+t q d_{r, c, a}\right)+G H G C A_{-} E N E_{r, c, a} \\
& =P F F L_{r, a} \cdot Q F F L_{r, a}\left(\sum_{c p \in C F F} \delta_{r, c p, a}^{f f} \cdot Q I N T_{r, c p, a}^{-p_{r, a}^{f}}\right)^{\frac{1}{1+\rho_{r, a}^{\rho}}} \delta_{r, a, c}^{f f} \cdot Q I N T_{r, c, a}{ }^{-p_{r, a}^{f f}-1},  \tag{4.40}\\
& \\
& \forall r \in R, a \in A C E S_{-} E N E, c \in C F F
\end{align*}
$$

$\alpha_{r, a}^{f f}$ : shift parameter for domestic commodity aggregation function,
$\delta_{r, c, a}^{f f}$ : shift parameter for domestic commodity aggregation function,
$\rho_{r, a}^{f f}$ : domestic commodity aggregation function exponent,
GHGCA_ENE $E_{r, a, c}$ : GHG emission cost related to energy consumption, $c \in C F F$ : a set of fossil fuel commodities (COA, OIL, GAS, P_C, GDT).

Aggregate fossil fuel consumption is defined as a CES aggregate. The optimal quantity of fossil fuel consumption is inversely related to the each fossil fuel price. QFFL appears as the aggregated energy consumption, bought at the price, $P Q$ plus GHG emission cost related to energy consumption.

## Energy Consumption of Energy Transformation sector

$$
\begin{equation*}
\text { QINT }_{r, c, a}=Q E N E_{r, a} \cdot \text { iene }_{r, c, a}, \quad \forall r \in R, a \in A L E O_{-} E N E, c \in E N E \tag{4.41}
\end{equation*}
$$

$a \in A L E O_{-} E N E(\subset A)$ : a set of activities with a CES function at energy nest,
iene $_{r, c, a}$ : energy commodity consumption ratio.

The Leontief energy commodity consumption technology is specified for the energy transformation sector. The price of the aggregate energy is defined as below;

## Energy Costs of Energy Transformation Sector

$$
\begin{equation*}
P E N E_{r, a} \cdot Q E N E_{r, a}=\sum_{c \in E N E}\left\{\operatorname{PINT}_{r, c, a} \cdot\left(1+t q d_{r, c, a}\right) \cdot Q I N T_{r, c, a}+G H G C A_{-} E N E_{r, c, a}\right\}, \quad \forall r \in R, a \in A L E O_{-} E N E \tag{4.42}
\end{equation*}
$$

## Commodity Production and Allocation

$$
\begin{equation*}
Q X A C_{r, a, c}=\theta_{r, a, c} \cdot Q A_{r, a}, \quad \forall r \in R, a \in A, c \in C X \tag{4.43}
\end{equation*}
$$

$\theta_{r, a, c}$ : yield of output c per unit of activity $a$
On the right-hand side, production quantities, disaggregated by activity, are defined as yields times activity levels. On the left-hand side, these quantities are allocated to market sales. Note that this equation permits (i) any commodity to be produced by one or more activities and (ii) any activity to produce one or more commodities

## Commodity Production and Allocation (non-energy commodities)

$$
\begin{equation*}
Q X_{r, c}=\alpha_{r, c}^{a c} \cdot\left(\sum_{a \in A} \delta_{r, a, c}^{a c} \cdot Q X A C_{r, a, c}^{-p_{r, c}^{a c}}\right)^{-\frac{1}{\rho_{r, c}^{a c}}}, \quad \forall r \in R, c \in(C X-E N E) \tag{4.44}
\end{equation*}
$$

$\alpha_{r, c}^{a c}$ : shift parameter for domestic commodity aggregation function,
$\delta_{r, a, c}^{a c}$ : shift parameter for domestic commodity aggregation function,
$\rho_{r, c}^{a c}$ : domestic commodity aggregation function exponent,
$c \in E N E$ : a set of energy commodities (COA, OIL, GAS, P_C, ELY, GDT).

## First-Order Condition for Output Aggregation Function (non-energy commodities)

$$
\begin{equation*}
P X A C_{r, a, c}=P X_{r, c} \cdot Q X_{r, c} \cdot\left(\sum_{a p \in A} \delta_{r, a p, c}^{a c} \cdot Q X A C_{r, a p, c}^{-p_{r, c, p}^{a c}}\right)^{-1} \cdot \delta_{r, a, c}^{a c} \cdot Q X A C_{r, a, c}^{-\rho_{r, c}^{a c}-1}, \quad \forall r \in R, a \in A, c \in(C X-E N E) \tag{4.45}
\end{equation*}
$$

Aggregate marketed production of any commodity excluding energy commodity is defined as a CES aggregate of the marketed output levels of the different activities producing the commodity (equation (4.44)). The optimal quantity of the commodity from each activity source is inversely related to the activity-specific price (equation (4.45)). $Q X$ appears as the output, sold at the price, $P X$, and produced with the inputs, $Q X A C$, that are purchased at the prices, $P X A C$.

More specifically, the choice between commodities from different sources is cast as an optimization problem. Equations (4.44) and (4.45) are the first-order conditions for maximizing profits from selling the aggregate output, $Q X$, at the price, $P X$, subject to the aggregation function and the disaggregated commodity prices, $P X A C$. A decline in the price, $P X A C$, of one activity relative to others would shift demand in its favor without totally eliminating demand for other, higher-priced sources. The degree of substitutability between different producers depends on the value of $\rho_{a}^{a c}$ which is a transformation of the elasticity of substitution.

It should be noted that, for the case where there is a single producer of a given commodity, the value of the share parameter, $\delta_{a}^{a c}$ would be unity and, as a result, $Q X A C=Q X$ and $P X A C=P X$, irrespective of the values for the elasticity and the exponent.

## Share of Commodity Production and Allocation (energy commodities)

$$
\begin{equation*}
S H A C_{r, a, c}=\frac{\psi_{r, a, c}^{a c}\left(\frac{P X A C_{r, a, c}}{p x a c_{r, a, c}^{p e}}\right)^{q_{r, a, c}^{a c}}}{\sum_{a p \in A} \psi_{r, a p, c}^{a c}\left(\frac{P X A C_{r, a p, c}}{p x a c_{r, a p, c}^{p r e}}\right)^{\eta_{r, a p, c}^{a c}}}, \quad \forall r \in R, c \in(C X \cap E N E) \tag{4.46}
\end{equation*}
$$

$S^{S H A C} C_{r, a, c}$ : share of the commodity $c$ produced by activity $a$,
$\psi_{r, a, c}^{a c}$ : Previous year's share of the commodity $c$ produced by activity $a$,
$p x a c_{r, a, c}^{\text {pre }}$ : Previous year's producer price of commodity $c$ for activity $a$,
$\eta_{r, a, c}^{a c}$ : Elasticity of domestic commodity aggregation.

## Commodity Production and Allocation (energy commodities)

$$
\begin{equation*}
\text { QXAC }_{r, a, c}=Q X_{r, c} S H A C_{r, a, c}, \quad \forall r \in R, a \in A, c \in(C X \cap E N E) \tag{4.47}
\end{equation*}
$$

Aggregate marketed production of the energy commodity is defined as a share function. The share is determined by the ratio of the current and previous year's price. The volume is calculated by multiplying the share and the total produced commodity volume.

## Balance of the output and commodity aggregate (energy commodities)

$$
\begin{equation*}
\sum_{a \in A} Q X A C_{r, a, c} \cdot P X A C_{r, a, c}=Q X_{r, c} P X_{r, c}, \quad \forall r \in R, c \in(C X \cap E N E), \tag{4.48}
\end{equation*}
$$

## Output Transformation (CET) Function (Non-energy commodities)

$$
\begin{equation*}
Q X 2_{r, c}=\alpha_{r, c}^{t} \cdot\left(\delta_{r, c}^{t} \cdot Q E_{r, c}^{p_{r, c}^{t}}+\left(1-\delta_{r, c}^{t}\right) \cdot Q D_{r, c}^{p_{r, c}^{t}}\right)^{\frac{1}{p_{r, c}}}, \quad \forall r \in R, c \in(C E \cap C D-E N E) \tag{4.49}
\end{equation*}
$$

$\alpha_{r, c}^{t}:$ a CET function shift parameter,
$\delta_{r, c}^{t}$ : a CET function share parameter,
$\rho_{r, c}^{t}:$ a CET function exponent.

Equations (4.49) and (4.50) address the allocation of marketed domestic output, defined in equation (4.44), to two alternative destinations: domestic sales and exports for non-energy commodities. Equation (4.49) reflects the assumption of imperfect transformability between these two destinations. The CET function, which applies to commodities that are both exported and sold domestically, is identical to a CES function except for negative elasticities of substitution. The elasticity of transformation between the two destinations is a transformation of $\rho^{t}$, for which the lower limit is one. The values are restricted to assure that the isoquant corresponding to the output transformation function is concave to the origin.

## Export-Domestic Supply Ratio (Non-energy commodities)

$$
\begin{equation*}
\frac{Q E_{r, c}}{Q D_{r, c}}=\left(\frac{P E_{r, c}}{P D S_{r, c}} \cdot \frac{1-\delta_{r, c}^{t}}{\delta_{r, c}^{t}}\right)^{\frac{1}{p_{r, c}^{t}-1}}, \quad \forall r \in R, c \in(C E \cap C D-E N E) \tag{4.50}
\end{equation*}
$$

Equation (4.50) defines the optimal mix between exports and domestic sales. Equations (4.8), (4.49), and (4.50) constitute the first-order conditions for maximization of producer revenues given the two prices and subject to the CET function and a fixed quantity of domestic output. Note that equation (4.50) assures that an increase in the export-domestic price ratio generates an increase in the export-domestic supply ratio (i.e. a shift toward the destination that offers the higher return).

Output Transformation for Domestically Sold Outputs Without Exports and for Exports Without Domestic Sales

$$
\begin{equation*}
Q X 2_{r, c}=Q D_{r, c}+Q E_{r, c}, \quad \forall r \in R, c \in(C E \cap C E N) \cup(C D \cap C D N) \tag{4.51}
\end{equation*}
$$

$c \in C E N(\subset C)$ : non-exported commodities (complement of CE),
$c \in C D N(\subset C)$ : commodities without domestic market sales of domestic output (complement of CD).
This equation replaces the CET function for domestically produced commodities that do not have both exports and domestic sales. It allocates the entire output volume to one of these two destinations.

## Share of the Domestically sold and export (energy commodities)

$$
\begin{equation*}
S H Q E_{r, c}=\frac{\psi_{r, c}^{t}\left(\frac{P E_{r, c}}{p e_{r, c}^{r e c}}\right)^{\eta_{r, c}^{t}}}{\psi_{r, c}^{t}\left(\frac{P E_{r, c}}{p e_{r, c}^{p r e}}\right)^{\eta_{r, c}^{p_{c}}}+\left(1-\psi_{r, c}^{t}\right)\left(\frac{P D S_{r, c}}{p d s_{r, c}^{p r e}}\right)^{\eta_{r, c}^{t}}}, \quad \forall r \in R, c \in(C E \cap C D \cap E N E) \tag{4.52}
\end{equation*}
$$

$S H Q E_{r, c}$ : share of domestically sold and export commodity $c$,
$\psi_{r, c}^{t}$ : Previous year's share of export to domestically produced commodity $c$,
$\eta_{r, c}^{t}$ : Elasticity of domestic produced commodity aggregation,
$p e_{r, c}^{p r e}$ : Previous year's export price of commodity $c$,
$p d s_{r, c}^{p r e}$ : Previous year's domestic supply price of commodity $c$.

## Exported energy commodities

$$
\begin{equation*}
Q E_{r, c}=Q X 2_{r, c} \cdot S H Q E_{r, c}, \quad \forall r \in R, c \in(C E \cap C D \cap E N E) \tag{4.53}
\end{equation*}
$$

## Domestically sold energy commodities

$$
\begin{equation*}
Q D_{r, c}=Q X 2_{r, c} \cdot\left(1-S H Q E_{r, c}\right), \quad \forall r \in R, c \in(C E \cap C D \cap E N E) \tag{4.54}
\end{equation*}
$$

The allocation of the domestically produced energy commodities is determined with the price change comparing with the previous year. The share of the export to produced commodities is described as the above equation. The volume is calculated by multiplying the share and the total produced commodity volume.

## Composite Supply (Armington) Function (Non-energy commodities)

$$
\begin{equation*}
Q Q_{r, c}=\alpha_{r, c}^{q} \cdot\left(\delta_{r, c}^{q} \cdot Q M_{r, c}^{-\rho_{r, c}^{q}}+\left(1-\delta_{r, c}^{q}\right) \cdot Q D_{r, c}^{-\rho_{r, c}^{q}}\right)^{-\frac{1}{p_{r, c}^{q}}}, \quad \forall r \in R, c \in(C M \cap C D-E N E) \tag{4.55}
\end{equation*}
$$

$\alpha_{r, c}^{q}:$ an Armington function shift parameter,
$\delta_{r, c}^{q}$ : an Armington function share parameter,
$\rho_{r, c}^{q}:$ an Armington function exponent.

Imperfect substitutability between imports and domestic output sold domestically is captured by a CES aggregation function in which the composite commodity that is supplied domestically is "produced" by domestic and imported commodities entering this function as "inputs". When the domain of this function is limited to commodities that are both imported and produced domestically, it is often called an "Armington" function, named after the originator of the idea of using a CES function for this purpose. The elasticity of substitution between commodities from these two sources is a transformation of for which the lower limit is minus one.

## Import-Domestic Demand Ratio (non-energy commodities)

$$
\begin{equation*}
\frac{Q M_{r, c}}{Q D_{r, c}}=\left(\frac{P D D_{r, c}}{P M_{r, c}} \cdot \frac{\delta_{r, c}^{q}}{1-\delta_{r, c}^{q}}\right)^{\frac{1}{p_{r, c}+1}}, \quad \forall r \in R, c \in(C M \cap C D-E N E) \tag{4.56}
\end{equation*}
$$

Equation (4.56) defines the optimal mix between imports and domestic output. Its domain is thus limited to imports with domestic production. Note that the equation assures that an increase in the domestic-import price ratio generates an increase in the import-domestic demand ratio (that is, a shift away from the source that becomes more expensive). Together, equations (4.4), (4.55), and (4.56) constitute the first-order conditions for cost-minimization given the two prices and subject to the Armington function and a fixed quantity of the composite commodity.

## Composite Supply for Non-imported Outputs and Non-produced Imports

$$
\begin{equation*}
Q Q_{r, c}=Q D_{r, c}+Q M_{r, c}, \quad \forall r \in R, c \in(C D \cap C M N) \cup(C M \cap C D N) \tag{4.57}
\end{equation*}
$$

$c \in C M N(\subset C)$ : a set of non-imported commodities.
The Armington function is replaced by equation (4.57) for the union of commodities that have either imports or domestic sales of domestic output but not both. For any commodity in this category, it imposes equality between "composite supply" and one of the variables on the right-hand side.

## Share of the domestically sold and imported (energy commodities)

$$
\begin{equation*}
\text { SHQM }_{r, c}=\frac{\psi_{r, c}^{m}\left(\frac{P M_{r, c}}{p m_{r, c}^{p r e}}\right)^{\eta_{r, c}^{m}}}{\psi_{r, c}^{m}\left(\frac{P M_{r, c}}{p m_{r, c}^{p r e}}\right)^{q_{r, c}^{m}}+\left(1-\psi_{r, c}^{m}\right)\left(\frac{P D D_{r, c}}{p d d_{r, c}^{p r e}}\right)^{q_{r, c}^{m}}}, \quad \forall r \in R, c \in(C M \cap C D \cap E N E) \tag{4.58}
\end{equation*}
$$

SHQM: share of domestically sold and imported commodity $c$,
$\psi_{r, c}^{m}:$ Previous year's share of import to domestically produced commodity $c$,
$\eta_{r, c}^{m}$ : Elasticity of domestic consumption commodity aggregation,
$p m_{r, c}^{\text {pre }}$ : Previous year's import price of commodity $c$,
$p d d_{r, c}^{p r e}:$ Previous year's domestic demand price of commodity $c$.

## Imported energy commodities

$$
\begin{equation*}
Q M_{r, c}=Q Q_{r, c} \cdot S H Q M_{r, c}, \quad \forall r \in R, c \in(C M \cap C D \cap E N E) \tag{4.59}
\end{equation*}
$$

## Domestically sold energy commodities

$$
\begin{equation*}
Q D_{r, c}=Q Q_{r, c} \cdot\left(1-S H Q M_{r, c}\right), \quad \forall r \in R, c \in(C M \cap C D \cap E N E) \tag{4.60}
\end{equation*}
$$

The aggregation of imported and domestically produced energy commodities is determined with the price change compared to the previous year being the same as the export share determination.

### 4.3. Institution block

## Factor Income

$$
\begin{equation*}
Y F_{r, f}=\sum_{a \in A} W F_{r, f} \cdot W F D I S T_{r, f, a} \cdot Q F_{r, f, a}+\text { transfr_} f_{r, f} \cdot E X R_{r}, \quad \forall r \in R, f \in F \tag{4.61}
\end{equation*}
$$

$Y F_{r, f:}$ income of factor $f$, transfr_fr,f: factor transfer from abroad.

Institutional Factor Incomes

$$
\begin{equation*}
Y I F_{r, i, f}=\operatorname{shif}_{r, i, f} \cdot\left(\left(1-t f_{r, f}\right) \cdot Y F_{r, f}-\text { transfr }_{r, f} \cdot E X R_{r}\right), \forall r \in R, i \in I N S D, f \in F \tag{4.62}
\end{equation*}
$$

$i \in I N S$ : a set of institutions (domestic and rest of the world),
$i \in \operatorname{INSD}(\subset I N S):$ a set of institutions (domestic and rest of the world),
YIF ${ }_{r, i, f}$ income to domestic institution $i$ from factor $f$,
shif $_{r, i, f}$ : share of domestic institution $i$ in income of factor f ,
$t f_{r, f}$ direct tax rate for factor $f$,
transfr $r_{r, f}$ factor transfer to abroad.

Equation (4.61) defines the total income of each factor. In equation (4.62), this income is split among domestic institutions in fixed shares after payment of direct factor taxes and transfers to the rest of the world. The latter are fixed in foreign currency and transformed into domestic currency by multiplying by the exchange rate. This equation makes reference to the set of domestic institutions (households, enterprises, and the government), a subset of the set of institutions, which also includes the rest of world.

## Income of non-governmental domestic Institution

$$
\begin{align*}
& Y I_{r, i}=\sum_{f \in F} Y I F_{r, i, f}+\text { TRII_Resource }{ }_{r, i} \\
& + \text { shincome }_{r, i} \cdot \text { GHGTCOST }_{r}+\text { VRENCAPTOT }_{r, i} \\
& +\left(P G H G_{-} G+P G H G_{-} I M P_{-} Q U O_{r}-P G H G_{-} E X P_{-} Q U O_{r}\right) \cdot G H G_{-} I M P_{r} \cdot E X R_{r} \cdot \text { shincome }_{r, i} \\
& + \text { shincome }_{r, i} \cdot \sum_{a \in A} \sum_{\text {emст } \in E M C M} Q R E D_{r, \text { emст }, a} \\
& + \text { shincome }_{r, i} \cdot \sum_{a \in A} \text { RQUOQA }_{r, a} \cdot Q A_{r, a} \cdot P A_{r, a} \\
& + \text { shres }_{r, i} \cdot \sum_{a \in A} \text { PRES }_{r, a} \cdot \text { QRES }_{r, a}, \quad \forall r \in R, i \in I N S D N G \tag{4.63}
\end{align*}
$$

$i \in \operatorname{INSDNG}(\subset I N S D):$ a set of domestic nongovernment institutions, $Y I_{r, i}$ : income of institution i (in the set INSDNG),
TRII_Resource ${ }_{r, i}$ : transfers to institution $i$,
GHGTCOST $_{r}$ : GHG emission cost,
$V_{R E N C A P T O T}^{r}$ : rent related to electricity capacity,
shincome $_{r, i}$ : total income share of GHG emission cost for institution $i$,
shres $_{r, i}$ : resource income share of institution $i$,
GHG_IMP : GHG emission credit import (net),
$P G H G_{-} G_{r}$ : global GHG emission price,

PGHG_IMP_QUO ${ }_{r}$ : GHG emission price generated by import quota,
PGHG_EXP_QUO $:$ GHG emission price generated by export quota.

Domestic nongovernment institutions form a subset of the set of domestic institutions. The total income of any domestic nongovernment institution is the sum of factor incomes (defined in equation (4.63), transfers from other domestic nongovernment institutions (defined below in equation(4.65)), the balance of payment of GHG emission trading, CCS installation cost, rent generated by the quota of the activity level and electricity generation capacity rent. This rent total is defined below (only for enterprise).

## Total rent of electricity capacity

$$
\begin{equation*}
\text { VRENCAPTOT }_{r, \text { "ent" }}=\sum_{a \in A} \text { VRENCAP }_{r, a} \quad \forall r \in R \tag{4.64}
\end{equation*}
$$

## Household Consumption Expenditures

$$
\begin{equation*}
E H_{r, h}=\left(1-\text { shii_use }_{r, h}\right)\left(1-\text { MPS }_{r, h}\right) \cdot\left(1-\text { TINS }_{r, h}\right) \cdot Y I_{r, h}-G H G C H_{r, h}, \quad \forall r \in R, h \in H \tag{4.65}
\end{equation*}
$$

$h \in H(\subset I N S D N G):$ a set of households,
$E H_{r, h}$ : household consumption expenditures,
Shii_use ${ }_{r, i}$ : share of net income of $i$,
$M P S_{r, i}$ : marginal propensity to save for domestic nongovernment institution (exogenous variable),
TINS $_{r, i}$ : direct tax rate for institution $i$,
$\mathrm{GHGCH}_{r, h}$ : GHG emission cost of household $h$ in region $r$.

Among the domestic nongovernment institutions, only households demand commodities. In equation (4.66), the total value of consumption spending is defined as the income that remains after direct taxes, savings, and transfers to other domestic nongovernment institutions.

## Household Consumption Spending

$$
\begin{align*}
& \left(P Q D_{r, c} \cdot d f p q_{r, c, h} \cdot\left(1+t q d_{r, c, h}\right)+\sum_{g \in G} P G H G_{r} \cdot g w p_{g} \cdot e \text { eff } c_{r, c, h, g}\right) \cdot Q H_{r, c, h} \\
& =\left(P Q D_{r, c} \cdot d f p q_{r, c h} \cdot\left(1+t q d_{r, c, h}\right)+\sum_{g \in G} P G H G_{r} \cdot g w p_{g} \cdot e \text { eff } c_{r, c, h, g}\right) \cdot \gamma_{r, c, h}^{m} \cdot\left(1-\text { ADEEI }_{r, h}\right)^{-1} \quad, \quad \forall r \in R, c \in C, \forall h \in H \\
& +\beta_{r, c h}^{m} \cdot\left(E H_{r, h}-\sum_{c^{\prime} \in C}\left(P Q D_{r, c^{\prime}} \cdot d f p q_{r, c} \cdot h \cdot\left(1+t q d_{r, c}, h\right)+\sum_{g \in G} P G H G_{r} \cdot g w p_{g} \cdot \text { efff } c_{r, c}, c^{\prime} h, g\right) \cdot \gamma_{r, c^{\prime} h}^{m} \cdot\left(1-A D E E I_{r, h}\right)^{-1}\right) \tag{4.66}
\end{align*}
$$

$\gamma_{r, c, h}^{m}$ : subsistence consumption of marketed commodity $c$ for household $h$,
$\beta_{r, c, h}^{m}$ : marginal share of consumption spending on marketed commodity c for household h .

## Additional energy efficiency improvement (Household)

$$
\begin{equation*}
A D E E I_{r, h}=1-\left(\frac{P E N E \_H_{r, h}}{P E N E \_H_{r, h}^{\text {bau }}}\right)^{-\sigma_{r, h}^{e f f}}, \quad \forall r \in R, h \in H \tag{4.67}
\end{equation*}
$$

$P E N E \_H_{r, h}$ : Energy price of household
PENE _ $H_{r, h}^{\text {bau }}$ : Energy price of household (BaUcase)

## Energy price of household

$$
\begin{equation*}
P E N E_{-} H_{r, h}=\frac{\sum_{c \in E N E}\left(P Q D_{r, c} \cdot d f p q_{r, c, h} \cdot\left(1+t q d_{r, c, h}\right)+\sum_{g \in G} P G H G_{r} \cdot g w p_{g} \cdot e f f f c_{r, c, h, g}\right) \cdot Q H_{r, c, h}}{\sum_{c \in E N E} Q H_{r, c, h}}, \quad \forall r \in R, \forall h \in H \tag{4.68}
\end{equation*}
$$

It is assumed that each household maximizes a "Stone-Geary" utility function subject to a consumption expenditure constraint. The resulting first-order conditions, equations (4.66), are referred to as LES (linear expenditure system) functions since spending on individual commodities is a linear function of total consumption spending, $E H$. Note that the energy commodity price includes GHG emission price and additional energy efficiency improvement is also considered.

## Investment Demand

$$
\begin{equation*}
Q I N V_{r, c}=I A D J_{r} \cdot \overline{q_{i n v_{r, c}}}, \quad \forall r \in R, c \in C \tag{4.69}
\end{equation*}
$$

$I A D J_{r}$ : investment adjustment factor (exogenous variable), $\overline{\text { qinv } v_{r, c}}$ : base-year quantity of fixed investment demand.

Fixed investment demand is defined as the base-year quantity multiplied by an adjustment factor. For the basic model version, the adjustment factor is exogenous, in effect also making the investment quantity exogenous. Inventory investment is also included in the model, but is treated as an exogenous demand.

## Government Consumption Demand

$$
\begin{equation*}
Q G_{r, c}=\overline{G A D J_{r}} \cdot \overline{q g_{r, c}}, \quad \forall r \in R, c \in C \tag{4.70}
\end{equation*}
$$

$\overline{G A D J_{r}}$ : government consumption adjustment factor (exogenous variable),
$\overline{q g_{r, c}}$ : government consumption adjustment factor (exogenous variable).
Similarly, government consumption demand, in which the main component tends to be the services provided by the government labor force, is also defined as the base-year quantity multiplied by an adjustment factor. This factor is also exogenous and, hence, the quantity of government consumption is fixed.

## Government Revenue

$$
\begin{align*}
Y G_{r} & =\sum_{i \in I N S D N G} T I N S_{r, i} \cdot Y I_{r, i}+\sum_{f \in F} t f_{r, f} \cdot Y F_{r, f}+\sum_{a \in A} t a_{r, a} \cdot P A_{r, a} \cdot Q A_{r, a}+\sum_{a \in A} t v a_{r, a} \cdot P V A_{r, a} \cdot Q V A_{r, a} \\
& +\sum_{c \in C M} t m_{r, c} \cdot P W M_{c} \cdot Q M_{r, c} \cdot \overline{E X R}_{r}+\sum_{c \in C E} t e_{r, c} \cdot P W E_{c} \cdot Q E_{r, c} \cdot \overline{E X R}_{r} \\
& +\sum_{c \in C} \sum_{a \in A} t q d_{r, c, a} \cdot d f p q_{r, c, a} \cdot P Q D_{r, c} \cdot Q I N T_{r, c, a}+\sum_{c \in C} \sum_{h \in H} t q d_{r, c, h} \cdot d f p q_{r, c, h} \cdot P Q D_{r, c} \cdot Q H_{r, c, h} \\
& +\sum_{c \in C} t q d_{r, c, " \text { "gov" }} \cdot d f p q_{r, c, " g o v "} \cdot P Q D_{r, c} \cdot Q G_{r, c}+\sum_{c \in C} t q d_{r, c, " S-I^{\prime \prime}} \cdot d f p q_{r, c, " S-I "} \cdot P Q D_{r, c} \cdot Q I N V_{r, c}  \tag{4.71}\\
& +\sum_{f \in F} \text { YIF }_{r, g o v, f}+\text { TRII_Resource }_{r, g o v} \\
& +G H G T C O S T_{r} \cdot \text { shincome }_{r, " g o v "} \\
& +G H G_{-} I M P_{r} \cdot E X R_{r} \cdot\left(P G H G_{-} G+P G H G_{-} I M P \_Q U O_{r}-P G H G_{-} E X P \_Q U O_{r}\right) \\
& + \text { shincome } r_{r, " g o v "} \cdot \sum_{a \in A} Q A_{r, a} \cdot V R E N C A P_{r, a}+\text { shres }_{r, " g o v "} \cdot \sum_{a \in A} P R E S_{r, a} \cdot Q R E{S_{r, a}} \quad \forall r \in R
\end{align*}
$$

$Y G_{r}$ : government revenue

Total government revenue is the sum of revenues from taxes, factors, and transfers from the rest of the world. Emission trade cost is paid by government.

## Government Expenditure

$$
\begin{equation*}
E G_{r}=\sum_{c \in C} P Q D_{r, c} \cdot d f p q_{r, c, \text { "gov" }} \cdot\left(1+t q d_{r, c, \text { "gov" }}\right) \cdot Q G_{r, c}+\text { TRII_Use }_{r, " g o v "} \quad \forall r \in R \tag{4.72}
\end{equation*}
$$

$E G_{r}$ : government expenditures.
TRII_Use $e_{r, i}$ : transfers from institution $i$

Total government spending is the sum of government spending on consumption and transfers.

## Transfer use

$$
\begin{equation*}
\text { TRII_Use }_{r, i}=\text { shii_use }_{r, i} \cdot\left(1-\text { MPS }_{r, i}\right) \cdot\left(1-\text { TINS }_{r, i}\right) \cdot Y I_{r, i}, \quad \forall r \in R, i \in I N S D N G \tag{4.73}
\end{equation*}
$$

Transfers between domestic nongovernment institutions are paid as fixed shares of the total institutional incomes net of direct taxes and savings. The values of MPS and TINS are defined in separate equations.

## Government transfer use

$$
\begin{equation*}
\text { TRII_Use }_{r, \text { "gov" }}=\text { trnsfr_ }_{-} C R T_{r, " \text { gov" }} \cdot C P I_{r} \quad \forall r \in R \tag{4.74}
\end{equation*}
$$

trnsfr_CRT $r_{r, " g o v "}$ : governmental transfer in base year
Governmental transfer is production of CPI and that of base year.

## Transfer resource

TRII_Resource ${ }_{r, i}=$ shii_resource $_{r, i}$.

$$
\begin{equation*}
\left(c r t_{-} n_{r} \cdot \overline{E X R_{r}}-\text { crt_out }_{r} \cdot \overline{E X R_{r}}+\sum_{i^{\prime}} T R I I_{-} U s e_{r, i^{\prime}}\right), \quad \forall r \in R, i \in I N S D \tag{4.75}
\end{equation*}
$$

shii_resource $_{r, i}$ : a ratio of transfer to institution i of total transfer in a country,
crt_in $n_{r}$ : transfer from rest of the world, crt_out $_{r}$ : transfer to rest of the world.

### 4.4. International trade block

## Imported commodity

$$
\begin{equation*}
Q W M_{r, c}=Q M_{r, c}, \quad \forall r \in R, c \in C M \tag{4.76}
\end{equation*}
$$

$Q W M_{r, c}$ : quantity of imports of commodity.
Internationally traded commodity equals each countries imports.

## Exported commodity

$$
\begin{equation*}
Q W E_{r, c}=Q E_{r, c}, \quad \forall r \in R, c \in C E \tag{4.77}
\end{equation*}
$$

$Q W E_{r, c}$ : quantity of exports of commodity.
Quantity of domestic export is the sum of commodity export and international trade service (it is only for transport sector).

## World trade nominal balance

$$
\begin{align*}
& \sum_{r \in R}\left(1-t w_{r, c}\right) \cdot P W M_{c} \cdot Q W M_{r, c} \cdot d i s_{-} i m p_{r, c} \\
& \quad=\sum_{r \in R} P W E_{c} \cdot Q W E_{r, c} \cdot \text { dis _ }_{-} \text {exp }_{r, c}+P T R S_{c} \cdot Q T R S_{c}, \quad \forall c \in(C M \cap C E) \tag{4.78}
\end{align*}
$$

$t w_{r, c}$ : international trade cost ratio,
$P_{T R S}^{c}$ : price of international trade service,
$Q T R S_{c}$ : quantity of international trade service.

World nominal trade balance is shown in equation (4.78).

## World trade volume balance

$$
\begin{equation*}
\sum_{r \in R} Q W M_{r, c}=\left(1-\lambda_{c}^{w}\right) \cdot \sum_{r \in R}\left(Q W E_{r, c}-Q T R S_{c}\right), \quad \forall c \in(C M \cap C E) \tag{4.79}
\end{equation*}
$$

$\lambda_{c}^{w}$ : depreciation rate of traded commodity $c$.

Total imported commodity in the world is equal to that of exported excluding depreciation.

## Transport service demand

$$
\begin{equation*}
Q T R S_{c}=t s h_{c} \cdot \sum_{r} Q W E_{r, c}, \quad \forall c \in C_{-} T R S \tag{4.80}
\end{equation*}
$$

## CIF and FOB relationship

$$
\begin{equation*}
P T R S_{c} \cdot Q T R S_{c}=\sum_{r^{\prime}} t w_{r^{\prime}, c} \cdot P W M_{c} \cdot Q W M_{r^{\prime}, c} \cdot d i s_{-} i m p_{r^{\prime}, c}, \quad \forall c \in C_{-} T R S \tag{4.81}
\end{equation*}
$$

$t s h_{c}$ : share of international trade service to world total international trade service, $c \in C \_T R S$ : a set of transport service.

The transport service is assumed to be proportional to the world total export of transport. The nominal international trade service provided by a country $r$ is assumed to produce a constant share ratio and world total international trade service.

### 4.5. Biomass consumption as fuel combustion

The biomass is still the main energy source in some developing countries and they are a main factor of air pollutants emission. The biomass consumption is calculated as below;

## Biomass consumption (Household)

$$
\begin{equation*}
T B H_{r, h}=\frac{E H_{r, h}}{C P I_{r}} \cdot \text { bioc }_{r, h} \cdot \text { biod }_{r, h} \quad \forall r \in R, h \in H \tag{4.82}
\end{equation*}
$$

## Biomass consumption (Industry)

$$
\begin{equation*}
T B I_{r, a}=Q A_{r, a} \cdot \text { bioc }_{r, a} \cdot \operatorname{biod}_{r, a} \quad \forall r \in R, a \in A \tag{4.83}
\end{equation*}
$$

$T B H_{r, h}$ : biomass consumption by household $h$, $T B I_{r, a}$ : biomass consumption by activity $a$, bioc $_{r, a c}$ : biomass consumption coefficient to the activity level of sector $a c$, biod $_{r, a c}$ : decreasing rate of biomass consumption of sector ac.

The biomass consumption is defined as activity level multiplied by two coefficients. One is the base year calibrated coefficient bioc and the other is decreasing rate of its use biod. Equation (4.82) represents household biomass consumption and the activity level is defined as household expenditure divided by CPI. The industrial biomass consumption is shown in (4.83).

### 4.6. Air pollutants and GHG emissions

As is mentioned already in section 3.5, the air pollutants and GHG emissions are classified into two groups (related to activity level and fuel combustion). We are going to formulate these two groups separately.

## Emissions related to activity level (Industrial activity)

$$
\begin{align*}
E M A L I_{r, a, g}= & Q A_{r, a} \cdot \text { efacl }_{r, a, g} \cdot\left(1-N E R E D_{r, a, g}\right) \cdot\left(1+\chi_{r, a, g}\right) \\
& -\sum_{\text {eтст } \in E M C M}\left(Q R E D_{r, e m c m, a} / \eta_{\text {emcm }, a}\right), \quad \forall r \in R, a \in A, g \in G \tag{4.84}
\end{align*}
$$

$g \in G$ : a set of emission gases,
$E M A L I_{r, a, g}$ : emissions non-energy related emission by industrial activity $a$,
$e f a c l_{r, a c, g}$ : emission factors for emissions related to activity level by sector $a c$,
$N E R E D_{r, a, g}$ : emission reduction caused by the ghg emission price, $\chi_{r a, g}:$ reference case emission reduction coefficient.

## Additional emission reductions related to activity level (Industrial activity)

$$
\begin{equation*}
\operatorname{NERED}_{r, a, g}=1-\left(P G H G_{r}+1\right)^{-\sigma_{r, a, g}^{g h g}}, \quad \forall r \in R, a \in A, g \in G \tag{4.85}
\end{equation*}
$$

$\sigma_{r, a, g}^{g h g}:$ relasticity of the additional emission reductions of non-energy related emissions.

## Emissions related to activity level (household)

$$
\begin{equation*}
E M A L H_{r, h, g}=\frac{E H_{r, h}}{C P I_{r}} \cdot \text { efacl }_{r, h, g} \quad \forall r \in R, h \in H, g \in G \tag{4.86}
\end{equation*}
$$

$E M A L H_{r, h, g}$ : emissions related to activity level by household $h$.
The emissions related to activity level such as $\mathrm{CO}_{2}$ emission from cement production is calculated by multiplying the activity level by the emission factor efacl. However, non-energy related GHG emission related to activity levels such as $\mathrm{CH}_{4}$ emission from rice fields and $\mathrm{CO}_{2}$ emission from the cement industry is defined at the top nest of the production function.

If a industrial sector can install CCS technology, it reduces the emission. In addition, there is additional emission reduction in mitigation case as NERED.

## Emissions related to fossil fuel combustion (Industrial activity)

$$
\begin{equation*}
E M F F I_{r, c, a, g}=Q I N T_{r, c, a} \cdot \text { enur }_{r, c, a} \cdot \text { efff } c_{r, c, a, g} \quad \forall r \in R, c \in E N E, a \in A, g \in G \tag{4.87}
\end{equation*}
$$

$E M F F I_{r, c, a, g}$ : emissions related to fossil fuel combustion emitted by industrial activity $a$ consuming of goods $c$, efffc $c_{r, c, a c, g}$ : emission factors for emissions fossil fuel combustion by sector $a c$ consuming of goods $c$, enur $r_{r, a c}$ : energy-used ratio (1-non-energy-use ratio).

## Emissions related to fossil fuel combustion (household)

$$
\begin{equation*}
E M F F H_{r, c, h, g}=Q H_{r, c, h} \cdot e f f f c_{r, c, h, g} \quad \forall r \in R, c \in E N E, h \in H, g \in G \tag{4.88}
\end{equation*}
$$

$E M F F H_{r, c, h, g}$ : emissions related to fossil fuel combustion emitted by household $h$ consumption of goods $c$
The $\mathrm{CO}_{2}$ emitted by industrial activity is calculated in equation (4.87). The energy commodity inputs are multiplied by emission factor efffc and "energy-used ratio" enur represents the ratio of combustion to intermediate input of the energy commodity. Only the chemical industry is the only sector assumed to use fossil fuel as non-energy.

The emission factor efffc of $\mathrm{CO}_{2}$ is multiplied by three kinds of parameters which are "flag of fossil fuel transformation", "carbon fraction" and " $\mathrm{CO}_{2}$ emission coefficient" as below.

$$
\begin{equation*}
e f f f c_{r, c, h, g}=\text { pflag }_{c, a} \cdot p c_{c} \cdot p c o 2_{c} \quad \forall r \in R, c \in E N E, a \in A, g \in G^{C O 2} \tag{4.89}
\end{equation*}
$$

$g \in G^{\mathrm{CO}}:$ a set of $\mathrm{CO}_{2}$,
pflag ${ }_{c, a}$ : flag for fossil fuel transformation, $p c_{c}$ : carbon fraction, $p \mathrm{Co} 2_{c}$ : $\mathrm{CO}_{2}$ emission coefficient.
"Flag of fossil fuel transformation" pflag has 0 for fossil fuel transformation sectors ( $\mathrm{P}_{-} \mathrm{C}$ and GDT in this model) and 1 for the other sectors. "Carbon fraction" $p c$ denotes what ratio of carbon contained in fossil fuel would be converted into $\mathrm{CO}_{2}$. Finally, " $\mathrm{CO}_{2}$ emission coefficient" $p c o 2_{c}$ is the emission coefficient.

The emission factor efffc of non- $\mathrm{CO}_{2}$ is calibrated by EDGAR 4.1 emission inventory data ${ }^{9}$ and Bond et $a l .{ }^{10}$ with EMEP/EEA air pollutant emission inventory guidebook $2009^{11}$ and IPCC guideline ${ }^{12}$.

## Emissions related to biomass combustion (Industrial activity)

$$
\begin{equation*}
E^{E M B I I}{ }_{r, a, g}=T B I_{r, a} \cdot e f b i o_{r, a, g} \quad \forall r \in R, a \in A, g \in G \tag{4.90}
\end{equation*}
$$

$E M B I I_{r, a, g}$ : emissions related to biomass combustion emitted by industrial activity $a$, efbio ${ }_{r, a c, g}$ : emission factors for emissions fossil fuel combustion by sector ac.

## Emissions related to biomass combustion (household activity)

$$
\begin{equation*}
E M B I H_{r, h, g}=T B H_{r, h} \cdot e f b i o_{r, h, g} \quad \forall r \in R, h \in H, g \in G \tag{4.91}
\end{equation*}
$$

$E M B I H_{r, h, g}$ : emissions related to biomass combustion emitted by household $h$.

The emission from biomass combustion is estimated to multiply biomass consumption (EMBII and EMBIH) by emission factor efbio.

## GHG emission total in a region

$$
G H G T_{r}=\sum_{g \in G} g w p_{g} \cdot\left\{\begin{array}{l}
\left(\sum_{h \in H} \sum_{c \in C} E M F F H_{r, c, h, g}+\sum_{a \in A} \sum_{c \in C} E M F F I_{r, c, a, g}\right)  \tag{4.92}\\
+\left(\sum_{h \in H} E M A L H_{r, h, g}+\sum_{a \in A} E M A L I_{r, a, g}\right) \\
+\left(\sum_{h \in H} E M B I H_{r, h, g}+\sum_{a \in A} E M B I I_{r, a, g}\right)
\end{array}\right\} \forall r \in R
$$

$G H G T_{r}$ : GHG emission from region $r\left(\mathrm{CO}_{2}\right.$ equivalent $)$, $g w p_{g}$ : global warming potential of gas $g$.

Region total GHG emission (CO2 equivalent) is the summation of industry and household emissions

[^7]weighted by $g w p_{g}\left(\mathrm{CO}_{2}=1, \mathrm{CH}_{4}=23\right.$ and $\left.\mathrm{N}_{2} \mathrm{O}=296\right)$.

## GHG emission includes emission trading

$$
\begin{equation*}
G H G T_{-} C T_{r}=G H G T_{r}-G H G T_{-} I M P_{r} \cdot \forall r \in R \tag{4.93}
\end{equation*}
$$

$G H G T_{-} C T_{r}$ : GHG emission from region $r\left(\mathrm{CO}_{2}\right.$ equivalent) includes emission permit import.

GHG emission permits can be imported from foreign countries. In reality, the amount of emission trading is constrained to a certain level which can be treated as an import or export quota. In addition, these import and export quota make the emission price higher or lower considering global and domestic emission prices as below.

## GHG emission importing trading upper limit

$$
\begin{equation*}
\overline{\text { ghgt_imp_cap }}-G H G T \_I M P_{r} \geq 0 \perp P G H G_{-} I M P_{-} Q U O_{r} \geq 0 \quad \forall r \in R \tag{4.94}
\end{equation*}
$$

## GHG emission exporting trading upper limit

$$
\begin{equation*}
G H G T T_{-} I M P_{r}-\overline{g h g t_{-}} \exp _{-} c a p_{r} \geq 0 \perp P G H G_{-} E X P_{-} Q U O_{r} \geq 0 \quad \forall r \in R \tag{4.95}
\end{equation*}
$$

## GHG emission price nad international price

$$
\begin{equation*}
P G H G_{r}=E X R_{r} \cdot\left(P G H G_{-} G+P G H G_{-} I M P_{-} Q U O_{r}-P G H G_{-} E X P_{-} Q U O_{r}\right) \quad \forall r \in R \tag{4.96}
\end{equation*}
$$

$\overline{\text { ghgt_imp_cap }}$ : GHG emission trading (import) limit,
$\overline{\text { ghgt_exp_cap }}$ : GHG emission trading (export) limit,


If emission trade is equal to the limit, the domestic GHG emission price $(P G H G)$ will be different from global price (PGHG_G).

## GHG emission constraint

$$
\begin{equation*}
\overline{\text { ghgc }_{r}}-G H G T \_C T_{r} \geq 0 \perp P G H G_{r} \geq 0 \quad \forall r \in R \tag{4.97}
\end{equation*}
$$

$\overline{\text { ghgc }_{r}}$ : GHG emission constraint.
 variable of this equation.

## GHG emission cost of energy (Industry)

$$
\begin{equation*}
G H G C A_{-} E N E_{r, c, a}=P G H G_{r} \cdot \sum_{g \in G} g w p_{g} \cdot E M F F I_{r, c, a, g} \quad \forall r \in R, a \in A \tag{4.98}
\end{equation*}
$$

## GHG emission cost of non-energy (Industry)

$$
\begin{equation*}
G H G C A \_N E N E_{r, a}=P G H G_{r} \cdot \sum_{g \in G} g w p_{g} \cdot\left(E M B I I_{r, a, g}+E M A L I_{r, a, g}\right) \quad \forall r \in R, a \in A \tag{4.99}
\end{equation*}
$$

## GHG emission cost of household

$$
\begin{equation*}
G H G C H_{r, h}=P G H G_{r} \cdot \sum_{g \in G} g w p_{g} \cdot\left(\sum_{c \in C} E M F F H_{r, c, h, g}+E M A L H_{r, h, g}+E M B I H_{r, h, g}\right) \quad \forall r \in R, h \in H \tag{4.100}
\end{equation*}
$$

## GHG total cost

$$
\begin{equation*}
\text { GHGTCOST }_{r}=\sum_{a \in A} G H G C A_{r, a}+\sum_{h \in H} G H G C H_{r, h} \quad \forall r \in R \tag{4.101}
\end{equation*}
$$

GHG cost consists of those of activity and household.

When the GHG constrained on only global total emissions, the following equations are introduced instaid of the above.

## Global GHG emission constraint

$$
\begin{equation*}
\overline{\text { ghgtot_c }}-\sum_{r \in R} G H G T_{-} C T_{r} \geq 0 \perp P G H G_{-} G \geq 0 \tag{4.102}
\end{equation*}
$$

$\overline{\text { ghgtot_c }}$ : global GHG emission constraint,
PGHG_G: GHG emission price corresponding to the global emission constraint.

## Global GHG emission constraint price

$$
\begin{equation*}
P G H G_{-} G=P G H G_{r}, \quad \forall r \in R \tag{4.103}
\end{equation*}
$$

## Global GHG emission trading total

$$
\begin{equation*}
\sum_{r \in R} G H G_{-} I M P_{r}=0 \tag{4.104}
\end{equation*}
$$

Net GHG emission trading should be zero globally.

## GHG emission related to the international bankers

$$
\begin{equation*}
\text { EMFFINT }=\sum_{r \in R} \sum_{c \in C} \lambda_{c} \cdot Q W E_{r, c} \cdot e f i t_{c} \tag{4.105}
\end{equation*}
$$

EMFFINT: emission from international bankers,
efit $c_{c}$ : emission coefficient of international bankers.

GHG emission related to the international marine and aviation bankers are calculated by the following equation.

### 4.7. System constraint block

## Factor Markets

$$
\begin{equation*}
\sum_{a \in A} Q F_{r, f, a}=\overline{Q F S}_{r, f}, \quad \forall r \in R, f \in F \tag{4.106}
\end{equation*}
$$

$\overline{Q F S}_{r, f}$ : quantity supplied of factor (exogenous variable).

Equation (4.106) imposes equality between the total quantity demanded and the total quantity supplied for each factor other than capital. In the basic model version, all demand variables are flexible while the supply variable is fixed. The factor wage, $W F$, is the equilibrating variable that assures that this equation is satisfied: an increase in WF raises the wage paid by each activity, WF WFDIST, which is inversely related to the quantities of factor demand, $Q F$. All factors other than old capital are mobile between the demand activities.

## Composite Commodity Markets

$$
\begin{align*}
Q Q_{r, c}+ & \left(Q X 2_{r, c}+Q M_{r, c}\right) \cdot \operatorname{loss}_{r, c}+s t c h 2_{r, c} \\
& =\sum_{a \in A} Q I N T_{r, c, a}+\sum_{h \in H} Q H_{r, c, h}+Q G_{r, c}+Q I N V_{r, c}, \quad \forall r \in R, c \in C \tag{4.107}
\end{align*}
$$

loss $_{r, c}$ : distribution loss rate,
stch2 $2_{r, c}$ : Stock change of commodity $c$ (negative).

Equation (4.107) imposes equality between quantities supplied (from equations (4.55), (4.56) and (4.57)) and demanded of the composite commodity. The demand side includes endogenous terms (from equations (4.35), (4.66), (4.69) and (4.70)) and a new exogenous term for stock change. Among the endogenous terms, $Q G$ and QINV are fixed in the basic model version (compare with equations (4.69) and (4.70)). The composite commodity supply, $Q Q$, drives demands for domestic marketed output, $Q D$, and imports, $Q M$. The marketclearing variables are the quantities of import supply, for the import side, and the two interrelated domestic prices, $P D D$ and $P D S$, for domestic market output.

## Current-Account Balance for the Rest of the World, in Foreign Currency

$$
\begin{align*}
& \sum_{c \in C M} P M_{r, c} \cdot Q M_{r, c}+\text { transfr_crt_out }_{r}+G H G_{-} I M P_{r} \cdot P G H G_{r}  \tag{4.108}\\
& =\sum_{c \in C E} P E_{r, c} \cdot Q E_{r, c}+\text { transfr_crt_in }_{r}+\overline{F S A V_{r}} \quad \forall r \in R
\end{align*}
$$

$\overline{F S A V_{r}}$ :foreign savings (FCU) (exogenous variable),
transfr_crt_out $:$ current transfer to rest of the world, transfr_crt_in $r_{r}$ : current transfer from rest of the world.

The current-account balance, which is expressed in foreign currency, imposes equality between the country's spending and its earning of foreign exchange. For the basic model version, foreign savings is fixed; the (real) exchange rate (EXR) serves the role of equilibrating variable to the current-account balance. The fact that all items except imports and exports are fixed means that, in effect, the trade deficit also is fixed. Alternatively, the exchange rate may be fixed and foreign savings unfixed. In this case, the trade deficit is free to vary.

## Government Balance

$$
\begin{equation*}
Y G_{r}=E G_{r}+G S A V_{r} \quad \forall r \in R \tag{4.109}
\end{equation*}
$$

$G S A V_{r}$ :government savings.

The government balance imposes equality between current government revenue and the sum of current government expenditures (not including government investment) and savings. Savings may be negative. The alternative mechanisms for maintaining this balance are associated with equation(4.110).

## Direc Tax Rate

$$
\begin{equation*}
\text { TINS }_{r, i}=\overline{\operatorname{tins}_{r, i}} \cdot\left(1+\overline{\text { TINSADJ }_{r}} \cdot \operatorname{tins} 01_{r, i}\right)+\overline{\text { DTINS }_{r, i}} \cdot \operatorname{tins} 01_{r, i}, \quad \forall r \in R, i \in \operatorname{INSDNG} \tag{4.110}
\end{equation*}
$$

$\overline{\text { tins }_{r, i}}$ : rate of direct tax on domestic institutions i,
$\overline{\operatorname{TINSADJ}_{r}}$ : direct tax scaling factor ( $=0$ for base; exogenous variable),
tins $01_{r, i}: 0.1$ parameter with 1 for institutions with potentially flexed direct tax rates,
$D T I N S_{r, i}$ :change in domestic institution tax share ( $=0$ for base; exogenous variable).

Equation (4.110) defines the direct tax rates of domestic nongovernment institutions. For the basic model version, all variables on the right-hand side are fixed, in effect fixing the values for the direct tax rate variable for all institutions. In this setting, government savings is the endogenous variable that clears the government balance.

In the GAMS implementation of the standard model, two alternative closure rules are coded for the government balance. For both alternatives, government savings is fixed. In the first case, DTINS is the flexible variable that clears the government balance by scaling the base-year tax rates of each tax-paying institution. In this setting, the rates will change by a uniform number of (percentage) points for all institutions with a value of 1 for the parameter tins01 (that is, for all institutions with potentially flexed direct tax rates). Hence, the initial tax rate has no impact on the rate change. In the second case, TINSADJ becomes a variable while DTINS is fixed. For this closure, the changes in TINS are relatively large for institutions with relatively large base-year rates (if they have a value of 1 for tins 01 ).

## Institutional Savings Rates

$$
\begin{equation*}
M P S_{r, i}=\overline{m p s_{r, i}} \cdot\left(1+\overline{M P S A D J}_{r} \cdot m p s 01_{r, i}\right)+D M P S_{r} \cdot m p s 01_{r, i}, \quad \forall r \in R, i \in I N S D N G \tag{4.111}
\end{equation*}
$$

$m p s_{r, i}$ : base savings rate for domestic institution i , $\overline{M P S A D J_{r}}$ : savings rate scaling factor ( $=0$ for base), $m p s 01_{r, i}: 0-1$ parameter with 1 for institutions with potentially flexed direct tax rates, $D M P S_{r}: 0-1$ parameter with 1 for institutions with potentially flexed direct tax rates.

Equation (4.111) defines the savings rates of domestic nongovernment institutions. Its structure is the same as that of equation (4.110). Whether one or none of the variables MPSADJ and DMPS is flexible depends on the closure rule for the Savings-Investment balance. For the basic model version, DMPS is flexible, permitting MPS to be adjusted by a uniform rate for selected (one or more) nongovernment institutions.

## Savings-Investment Balance

$$
\begin{align*}
& \sum_{i \in I N S D N G} M P S_{r, i} \cdot\left(1-T I N S_{r, i}\right) \cdot Y I_{r, i}+G S A V_{r}+\overline{F S A V_{r}} \cdot \overline{E X R_{r}} \\
&=\sum_{c \in C} P Q_{r, c} \cdot\left(1+t q_{r, c,{ }^{" I}-S^{\prime \prime}}\right) \cdot Q I N V_{r, i} \quad \forall r \in R \tag{4.112}
\end{align*}
$$

Equation (4.112) states that total savings and total investment have to be equal. Total savings is the sum of savings from domestic nongovernment institutions, the government, and the rest of the world, with the last item converted into domestic currency. Total investment is the sum of the values of fixed investment (gross fixed capital formation) and stock changes.

In the basic model version, the flexible variable, DMPS, performs the task of clearing this balance (compare with equation (4.111)). None of the other items in the Savings-Investment balance is free to vary to assure that the balance holds. Given that the balancing role is performed by the savings side, this closure represents a case of "investment-driven" savings. In the GAMS code, additional Savings-Investment closures have also been programmed.

## Global Investment Balance

$$
\begin{equation*}
\sum_{r \in R} F S A V_{r}=0 \tag{4.113}
\end{equation*}
$$

Global invenstment should be balanced.

Up to this point, the matrix of this model as stated is not square; the number of equations exceeds the number of variables by one. However, the model satisfies Walras' law: one equation is functionally dependent on the others and can be dropped. The Savings-Investment balance or the current-account balance is commonly eliminated.) After eliminating one equation, the model becomes square and, in the absence of errors in formulation, a unique solution typically exists. Instead of dropping one equation, it is also possible to add one variable to the macroeconomic balance equations. The solution value of this variable should be zero. If not, one or more equations are not satisfied and a general equilibrium solution has not been found. This is the approach followed in the GAMS version of the model. A variable called WALRAS is added to the Savings-Investment balance. No equation is dropped.

After this adjustment, the model presented is complete and self-contained. In the basic model version, three more equations (and three new variables that appear in them) are added. The reason for including these is that they permit the formulation of balanced Savings-Investment closures 4 and 5 . We will return to the closure issue later, after presenting the new equations and their notation.

### 4.8. Activity constraint block

Climate policy analysis requires us to simulate power sectors activities in detail; however, their activity levels are decided not only by economic rationality but also political decision. Therefore, the power share or activity level should be constrained exogenously.
Activity constraint (Upper boundary)

$$
\begin{equation*}
\text { renew_up } p_{r, a}-Q A_{r, a} \geq 0 \quad V R E N C A P_{r, a} \geq 0, \quad \forall r \in R, a \in A=\left\{\text { renew_up } p_{r, a}>0\right\} \tag{4.114}
\end{equation*}
$$

renew_up $p_{r, a}$ : capacity of the activity level $a$ (for power sector energy).

Alternatively, we could have the constraints for power generation share.

$$
\begin{equation*}
s h_{-} e l y_{\_} u p_{r, a}-\frac{Q X A C_{r, a, \text { "ely" }}}{Q X_{r, e l y "}} \geq 0, \quad V R E N C A P_{r, a} \geq 0, \quad \forall r \in R, a \in A=\left\{s h_{-} e l y l_{-} u p_{r, a}>0\right\} \tag{4.115}
\end{equation*}
$$

$s h_{-} e l y{ }_{-} u p_{r, a}$ : Power generation share of activity $a$.

## Activity constraint (QUOTA)

$$
\begin{align*}
& \text { quotaqa }_{\text {ragg,aagg }}=\sum_{r \in \operatorname{Map} \_ \text {Ragg }(r, \text { ragg }) a \in \operatorname{Map} \_ \text {aagg }(a, a a g g)} \sum_{c \in C} Q A_{r, a} \cdot \theta_{r, a, c} \geq 0 \perp R Q U O Q A_{-} \text {agg }_{\text {ragg,aagg }} \geq 0,  \tag{4.116}\\
& \forall \text { ragg } \in \text { Ragg, aagg } \in \text { Aagg }
\end{align*}
$$

aagg $\in$ Aagg : a set of aggregated activity, ragg $\in$ Ragg : a set of aggregated regions, quotaqa $a_{\text {ragg,agg: }}$ : quota of aggregated ragion ragg and aggregated activity aagg.

In some cases, activities output can be constrained by a quota.

## Reduction measures (for non-energy related GHG emissions)

$$
\begin{align*}
Q R E D_{r, e m c m, a}= & \xi_{\text {emacm,a}}^{\max } \cdot \eta_{\text {emcm }, a} \cdot \sum_{g \in G} g w p_{g} \cdot E M A L I_{r, a, g} \cdot\left(\frac{P G H G_{r}}{\eta_{\text {emcm }, a} \cdot\left(1+S U R G H G_{r, e m c m, a}\right)}\right)^{2},  \tag{4.117}\\
& \forall r \in R, a \in A, \text { emcm } \in E M C M 0
\end{align*}
$$

emcm $\in E M C M 0(\subset E M C M):$ a subset of emission reduction counter measures which are for non-energy related emissions,
SURGHG $_{r, e m c m, a}$ : Complementary variable for the upper boundary of the counter measure installation.

## Reduction measures upper boundary (for non-energy related GHG emissions)

$$
\begin{equation*}
\xi_{e m c m, a}^{\max } \cdot \eta_{e m c m, a} \cdot \sum_{g \in G} g w p_{g} \cdot E M A L I_{r, a, g} \geq Q R E D_{r, e m c m, a} \perp S U R G H G_{r, e m c m, a} \geq 0, \forall r \in R, a \in A, \text { emcm } \in E M C M 0 \tag{4.118}
\end{equation*}
$$

Emission reduction counter measures (CCS is a good example) are installable when the emission is constrained. The emission reduction inputs is $Q R E D$ and their cost $\left(\$ / t o n C O_{2} \mathrm{eq}\right)$ is $\eta$. The installation percentage has upper boundary as $\xi$. The counstraint equation of the boundry is shown as in the equation. The complementary variable is SURGHG.

The following equations are the reduction counter measures for energy related GHG emission and biomass power plant absorption. The equation structures are same the non-energy related GHG emissions.

## Reduction measures (for Energy related GHG emissions)

$$
\begin{align*}
Q R E D_{r, e m c m, a}= & \xi_{e m c m, a}^{\max } \cdot \eta_{e m c m, a} \cdot \sum_{c \in E N E} \sum_{g \in G} g w p_{g} \cdot E M F F I_{r, a, c, g} \cdot\left(\frac{P G H G_{r}}{\eta_{e m c m, a} \cdot\left(1+S U R G H G_{r, e m c m, a}\right)}\right)  \tag{4.119}\\
& \forall r \in R, a \in A, \text { emcm } \in E M C M 1
\end{align*}
$$

emcm $\in E M C M 1(\subset E M C M):$ a subset of emission reduction counter measures which are for energy related
emissions.

## Reduction measures (for biomass power plant GHG absorption)

$$
\begin{align*}
Q R E D_{r, e m c m, a}= & \xi_{e m c m, a}^{\max } \cdot \eta_{\text {emcm }, a} \cdot \sum_{g \in G} g w p_{g} \cdot E M B I I_{r, a, g} \cdot\left(\frac{P G H G_{r}}{\eta_{\text {emcm }, a} \cdot\left(1+S U R G H G_{r, e m c m, a}\right)}\right)  \tag{4.120}\\
& \forall r \in R, a \in A, \text { emcm } \in E M C M 2
\end{align*}
$$

emcm $\in E M C M 2(\subset E M C M):$ a subset of emission reduction counter measures which are for biomass power plant absorption.

Reduction measures upper boundary (for energy related GHG emissions)

$$
\begin{gather*}
\xi_{\text {maxcm }, a}^{\max } \cdot \eta_{e m c m, a} \cdot \sum_{c \in E N E} \sum_{g \in G} g w p_{g} \cdot E F F I I_{r, a, c, g} \geq Q R E D_{r, e m c m, a} \perp S U R G H G_{r, e m c m, a} \geq 0,  \tag{4.121}\\
\forall r \in R, a \in A, \text { emcm } \in E M C M 1
\end{gather*}
$$

Reduction measures upper boundary (for biomass power plant GHG absorption)

$$
\begin{equation*}
\xi_{e m c m, a}^{\max } \cdot \eta_{\text {emcm }, a} \cdot \sum_{g \in G} g w p_{g} \cdot E M B I I_{r, a, g} \geq Q R E D_{r, e m c m, a} \perp \text { SURGHG }_{r, e m c m, a} \geq 0, \forall r \in R, a \in A, \text { emcm } \in E M C M 2 \tag{4.122}
\end{equation*}
$$

## 5. Model dynamics

This section describes the feature of model dynamics ${ }^{13}$.

### 5.1. Capital

AIM/CGE 2.0 can be categorized as a recursive dynamic model. The capital stock is determined by the previous year's capital stock, capital formation and capital depreciation.

$$
\begin{equation*}
Q F_{r, " c a p ", a}^{t}=Q F_{r, " c a p ", a}^{t-1} \cdot\left(1-\operatorname{dep} p_{r}^{t-1}\right) \quad \forall r \in R, t \in T \tag{5.1}
\end{equation*}
$$

Where
$t \in T$ : a set of time series,
$d e p_{r}^{t}$ : capital depreciation rate in time $t$ and region $r$.
As is mentioned in the previous chapter the old capital is fixed to each sector exogenously. The current year's new capital is determined as previous year's capital formation.

$$
\begin{equation*}
\overline{Q F S_{r, " N C A P "}^{t}}=\sum_{c} Q I N V_{r, c}^{t-1} \quad \forall r \in R, t \in T \tag{5.2}
\end{equation*}
$$

In this framework, the capital stock is calculated except for the base year. The base year capital stock is prepared by using the World Bank's physical capital stock database ${ }^{14}$.

### 5.2. Labor

The population and labor is dynamically determined.

$$
\begin{equation*}
\text { labor_stock } r_{r}^{t}=\text { labor_stock } r_{r}^{t-1} \cdot l a b_{-} g r_{r}^{t} \quad \forall r \in R, t \in T \tag{5.3}
\end{equation*}
$$

labor _stock ${ }_{r}^{t}$ : labor stock in time $t$ and region $r$,
$l a b_{\_} g r_{r}^{t}$ : labor stock (annual) growth rate in time $t$ and region $r$.
The labor stock calculated in the upper equation will be the factor quantity.

$$
\begin{equation*}
Q F S_{r, f}^{t}=\text { labor_stock }_{r}^{t} \quad \forall r \in R, t \in T, f \in F_{l a b} \tag{5.4}
\end{equation*}
$$

$f \in F_{l a b}$ : labor (skilled and unskilled labor).
The current version assumes the growth rate is as the data published by UN population prospects $2008^{15}$.

### 5.3. TFP (Total Factor Productivity)

We are aiming to simulate the future scenarios using this model and usually we assume the target GDP exogenously. The TFP (total factor productivity) should be determined on the assumption that labor stock and capital stock in a region are already estimated as shown in 5.1 and 5.2. The efficiency parameter $\alpha_{r, a}^{v a}$ stands for

[^8]TFP in this model, thus the $\alpha_{r, a}^{v a}$ (appeared in equation (4.30)) is calculated with GDP growth target,

$$
\begin{equation*}
\alpha_{r, a}^{v_{a}^{*}}=\frac{Q V A_{r, a}^{t-1} \cdot\left(1+g d p_{-} g r_{r}^{t^{*}}\right)}{\left(\sum_{f \in F} \delta_{r, a}^{v a} \cdot\left(Q F_{r, f, a}^{t-1} \cdot\left(1+f a c_{-} g r_{r, f}^{t}\right)\right)^{-p_{r, a}^{v a}}\right)^{-\frac{1}{\rho_{r, a}^{m a}}}}, \quad \forall r \in R, a \in A \tag{5.5}
\end{equation*}
$$

$\alpha_{r, a}^{v a *}:$ adjusted efficiency parameter in the CES value-added function,
$g d p_{-} g r_{r}^{t^{*}}$ : expected GDP growth target (annual growth rate),
$f a c_{\_} g r_{r, f}^{t}$ : expected factor input growth rate (calculated by 5.1 and 5.2).

### 5.4. AEEI (Autonomous Energy Efficiency Improvement)

The energy demand is controlled by calibration of the Autonomous Energy Efficiency Improvements (named AEEIs). We set the annually AEEI improvement rate and revise the intermediate input coefficients and household energy commodity consumption rate as;

$$
\begin{align*}
& \text { iene }_{r, c, a}^{t}=\text { iene }_{r, c, a}^{\text {"bse }} \text { - year" } \cdot \text { aeei } t_{r, c, a}^{t}, \quad \forall r \in R, c \in E N E, a \in A  \tag{5.6}\\
& \text { iena }_{r, c a}^{t}=\text { iene }_{r, c, a}^{\text {"bsse_ year" }} \cdot \sum_{c \in E N E} \text { iene }_{r, c, a}^{\text {"bsea }} \text { year" } \cdot \text { aeei }_{r, c, a}^{t}, \quad \forall r \in R, a \in A C E S \_E N E  \tag{5.7}\\
& \gamma_{r, c, h}^{m^{t}}=\gamma_{r, c, h}^{m^{t-1}} \cdot \text { aeeirr,c,h}{ }^{t}, \quad \forall r \in R, c \in E N E, h \in H \tag{5.8}
\end{align*}
$$

aeeir $i_{r, c, a c}^{t}$ : annual AEEI rate of energy commodity $c$, sector $a c$, time $t$ and region $r$.
CES parameters determining energy consumption is also dynamically calibrated.

## 6. How to use the model

We prepared two options to use the model. One is for the GAMS beginners and it utilizes an excel file. The other is for the experiencer of GAMS and this CGE model. The former is easy to be used but users can make less change into the model assumption. The latter may be difficult for the beginner to understand the programs but after you learn about GAMS and this CGE program you can manage the programs and add modification as you want. This chaper describes both ways and section 6.1 shows how to deal with the easy excel file. In the section 6.2 , the program structure and how to run the programs are shown.

### 6.1. Simple excel file operation

One simple excel file namely [/prog/input_data.xlsm] is prepared for the demo operation of CGE model. This excel file allows users to set basic defaults and input fundamental information before running the CGE model.

### 6.1.1. Input fundamental information

Generally, different colors have different meaning for each cell. Cell in grey color is for the title/label, cell in white color is for exogenous value, cells in green color is automatically calculated value from inputted information, and last is cell in yellow color for inputted information. Therefore, users can just only modify the cells in yellow color.

Table 5 meaning of the colors in the excel input format

| Meaning of color in sheet's cells |
| :--- |
| title/label |
| exogenous value |
| automatically calculated value from inputted information |
| inputted information |

## a. Basic information

In "Basic information" sheet, default settings are provided. These settings are:

- Country name: please choose your country's name from the provided list (15 countries as in "Sheet $1 ")$.
- Base year is fixed to be 2005. So, please choose target year of your simulation from the provided list (2025, 2030, 2050)
- Number of scenarios: there is only 1 scenario for Business-as-Usual (BaU). Meanwhile, there might be up to 3 scenarios for Counter Measure (CM). Thus, you can choose the number of CM cases from the provided list $(1,2,3)$.
- Gases: this is where you can decide which sort of gases you want to simulate in the model, which can be chosen from the provided list (Energy CO2, All CO2, All GHG).
- Counter Measures: this part sets the default for all scenarios by choosing "on" or "off". In BaU scenario, all the countermeasures must be OFF. You can decide different settings for CM scenarios. These countermeasures are: carbon tax, Carbon Capture and Storage (CCS), Additional Energy Efficiency Improvement (EEI), non-CO2 emission reduction, emission trading, and land-use.
- Autonomous Energy Efficiency Improvement (AEEI): this part sets more detail for the energy efficiency improvement. You can choose the improvement level from provided list (middle, high, low).
- CCS: this part is for detail setting of CCS, that are starting year $(2020,2025,2030,2035,2040,2045)$ and installation speed (middle, high, low).
b. Numeral information (GDP, Population, GHG emission gap, Emission trading, NUC, HYD)

The latter sheets provide numeral information to be inputted in the CGE model. They are GDP, population, GHG emission cap, emission trading, nuclear (NUC) and hydro (HYD) power installation.

- For GDP and Population: base year's actual value is provided. If you have actual value for the year rather than base year, you can input; otherwise you can input the growth rate of different periods into appropriate yellow cells (2005-2010,2011-2020,2021-2030,2031-2040,2041-2050) so that the actual value will be calculated accordingly (into green cells) based on the base year's value.
- For GHG emission cap and emission trading: the simulation is different for different periods (2005-2010,2011-2020,2021-2030,2031-2040,2041-2050). You can decide and input the value of simulation for different periods in different CM scenarios (in yellow cells). Actual value will be automatically calculated (in green cells) based on the loaded data and the ratio which you input into yellow cells. For GHG emission cap, the value of BaU (in white cells) is automatically loaded from CGE model's results. Meanwhile, GHG emission trading does not have value in BaU scenario.
- For NUC and HYD: Value of BaU scenario is also loaded from CGE model's results. Meanwhile, the value for CM scenarios is depended on the national energy development policy, whether the government would like to promote nuclear power and/or increase the hydro power capacity. The users can input such information into yellow color according to the policy of their countries.


### 6.1.2. Operation of CGE model through [input_data.xlsm]

After input all the required information, please click the "Run" button (located in "Basic information" sheet) to operate the CGE model. Figure 4 shows the simple operation of CGE model by using excel file.

|  |  |  | Run BaU |  |
| :---: | :---: | :---: | :---: | :---: |
| Country Name | Japan |  |  |  |
|  |  |  | Run CM1 |  |
| Base year | 2005 |  |  |  |
| Target year | 2050 |  | Run CM2 |  |
|  |  |  |  |  |
| Number of Scenarios |  |  |  |  |
| $\begin{array}{r} \mathrm{BaU} \\ \mathrm{CM}(1-3) \end{array}$ | 1 3 |  | Run CM3 |  |
|  |  |  | Run All |  |
| Gases | Energy CO2 |  |  |  |
| Counter Measures | BaU | CM1 | CM2 | CM3 |
| Carbon Tax | off | on | on | on |
| CCS | off | on | on | off |
| Additional EEI | off | on | on | on |
| Non-CO2 emission reduction | off | on | on | on |
| Emission Trading | off | on | off | on |
| Land Use | off | on | on | on |
| AEEI (Autonomous Energy Efficiency Improvement) |  | middle |  |  |
|  |  |  |  |  |
| CCS (Carbon Capture and Storage) |  | CM1 | CM2 | CM3 |
| Start year Installation speed |  | $\begin{array}{r} 2020 \\ \text { middle } \end{array}$ | $\begin{array}{r} 2020 \\ \text { high } \\ \hline \end{array}$ | $\begin{array}{r} 2020 \\ \text { middle } \end{array}$ |
|  |  |  |  |  |

Figure 4 Overview of simple excel operation

### 6.2. Program based operation

### 6.2.1. Program structure

There are two stages to use this AIM/CGE model (as shown in Figure 5). The first stage prepares basic scenario parameters, emission data. In the second stage, the model is run.

At the first stage, [emission.gms], [AEEI_mod.gms] and [scenario_parameter.gms] in the [/prog] directory should be run.

AIM/CGE model is started by running [operating_file.gms] in the [/prog] directory. [operating_file.gms] controls the two main programs [AIM_CGE.gms] and [scenario.gms]. Firstly, it runs [AIM_CGE.gms]. [AIM_CGE.gms] carries out 4 things, "data loading", "parameter calibration", "model describing" and "base year simulating". Then, this program saves the results temporarily. Secondly, [scenario.gms] is run. [scenario.gms] consists of scenario setting and simulation. This process can be carried out iteratively, for example if you want to have several scenarios or multiple years, you can set them.


Figure 5 Overview of the program structure

Although the AIM/CGE model runs just by executing [operating_file.gms], it requires some preparation before running it. Section 6.2 .4 shows what should be prepared.

### 6.2.2. AIM_CGE.gms

[AIM_CGE.gms] consists of mainly 7 parts (without declaration of sets, parameters, variables and so on).
The structure of [AIM_CGE.gms] is drawn in Figure 6. Left-side boxes represent the 7 procedures and some program files are included in each procedure, so the program names are shown in right side of that figure.

The list of the components and their contents are described in Table $6{ }^{16}$.

[^9]

Figure 6 AIM_CGE.gms structure

Table 6 List of AIM_CGE.gms components

| Program | Section | Section Name | Description | Included file |
| :---: | :---: | :---: | :---: | :---: |
| AIM_CGE.gms | 1-1 | Set declarations | All sets are declared. (No sets are defined here). |  |
|  | 1-2 | Load and modify SAM | SAM parameter is declared. Include file with data for a selected country is read in. <br> In this file, the SAM structure is adjusted to fit the model structure. Error messages alert the user to missing data. The user has the option | ```../inc_prog/data_import.gms ../inc_prog/DIAGNOSTICS.INC ../inc_prog/elasticity.gms ../inc_prog/sambal.inc ../inc_prog/sam_bal_dec.inc``` |
|  | 1-3 | Parameter declarations | All model parameters (including those used to initialize variables) are DECLARED. |  |
|  | 1-4 | Calibration | All model parameters (including those used to initialize variables) are DEFINED. | ../inc_prog/calibration.gms ../inc_prog/capital_stock.gms ../inc_prog/ap_ghg_emission.gms |
|  | 1-5 | Variable declarations | All model variables are declared. |  |
|  | 1-6 | Variable attributions | All model variables are initialized. In addition, variables not included in the model are fixed. | ../inc_prog/VARINIT.INC |
|  | 1-7 | Equation declarations | The model equations are declared. They are divided into the following four blocks: "Price block", "Production and trade block", "Institution |  |
|  | 1-8 | Model description | The model equations are defined. They are divided into the same four | ../inc_prog/equations.gms |
|  | 1-9 | Display of model parameters and variables | All model parameters and variables (initial levels) are displayed in alphabetical order. |  |
|  | 1-10 | Model closure | Macro and micro closure rules are selected by fixing selected |  |
|  | 1-11 | Model definition | The model (a set of equations most of which are linked to variables) | ../inc_prog/global_model_dec.gms ../inc_prog/one_region_model_dec.gms ../inc_prog/VARINIT.INC |
|  | 1-12 | Solving model | The model is solved for the base with some optional tests of robustness | ../inc_prog/LOWER.INC <br> ../inc_prog/LOWER_release.INC ../inc_prog/scale_global.gms |
|  | 1-13 | Unload results | Unload base year simulation results | ../inc_prog/renew_production_calib.gms ../inc_prog/unload_results.gms |

### 6.2.3. scenario.gms

[scenario.gms] includes 5 main parts which are shown as Figure 7. The list of the components of [scenario.gms] and their contents are also shown in Table 7.


Figure 7 scenario.gms structure

Table 7 List of scenario.gms components

| Program | Section | Section Name | Description | Included file |
| :---: | :---: | :---: | :---: | :---: |
| scenario.gms | 2-1 | Initialize model parameters | Re-calculate model parameters. They are same as the base year. | ```../inc_prog/pre_year.gms ../inc_prog/load_pre.gms ../inc_prog/parameter_in.gms ../inc_prog/set00.gms ../inc_prog/close_act.gms``` |
|  | 2-2 | Scenario setting | Set Scenario by changing model parameters | ../scenario/[scenario_name].gms ../inc_prog/CCS_industry.gms ../inc_prog/renew_production.gms |
|  | 2-3 | Realease variable conditions and fixing variables not in model at zero | Release variable conditions such as lower and upper boundary. And put the fixing condition. | ```../inc_prog/release_fix.inc ../inc_prog/VARINIT_iteration.INC ../inc_prog/VARFIX.inc ../inc_prog/equ_marg.gms``` |
|  | 2-4 | Model closure | Macro and micro closure rules are selected by fixing selected |  |
|  | 2-5 | Solve statement | The model is solved for the scenarios | ../inc_prog/LOWER.INC ../inc_prog/LOWER_release.INC |
|  | 2-6 | Unload results | Unload scenario simulation results | ../inc prog/unload_results.gms |

### 6.2.4. Preparation

Before executing the program, two preparations should be carried out. One is to input codes into [operation_file.gms]. The second is to prepare the assumed scenario. The concrete (or quantitative) scenario
must be described in GAMS code. This section describes how to prepare these things.

### 6.2.5. Putting codes into [operation_file.gms]

The target country and kinds of scenarios should be specified in [operation_file.gms]. The followings are extracted from the first part of [operation_file.gms].

There are 4 codes that should be checked and modified. They are located on the lines starting from "\$setglobal".
(1) Global [on/off] (line 8)

If your model is a global model, write [on] just after [\$setglobal global ].
(2) Region numbers (line 11)

If you chose a global model, the region numbers should be written after [\$setglobal RM ].
(3) Region code (line 15)

If you chose one country model, the region code should be written just after [\$setglobal Sr ]. Regional codes are listed in Table 8.

Table 8 country code list

| Code | Name | Code | Name | Code | Name |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 58 | Belgium-Luxembourg | HUN | Hungary | SDN | Sudan |
| 890 | Fmr Yugoslavia | IDN | Indonesia | SGP | Singapore |
| ARE | United Arab Emirates | IND | India | SLV | El Salvador |
| ARG | Argentina | IRL | Ireland | SUHH | Fmr USSR |
| AUS | Australia | IRN | Iran | SVK | Slovakia |
| AUT | Austria | IRQ | Iraq | SVN | Slovenia |
| BGD | Bangladesh | ISR | Israel | SWE | Sweden |
| BGR | Bulgaria | ITA | Italy | SYR | Syria |
| BLR | Belarus | JPN | Japan | THA | Thailand |
| BRA | Brazil | KAZ | Kazakhstan | TUN | Tunisia |
| BRN | Brunei Darussalam | KEN | Kenya | TUR | Turkey |
| CAN | Canada | KOR | Rep. of Korea | TWN | Chinese Taipei |
| CHE | Switzerland | KWT | Kuwait | UKR | Ukraine |
| CHL | Chile | LBN | Lebanon | URY | Uruguay |
| CHN | China | LBY | Libya | USA | USA |
| CIV | Cote d'Ivoire | LKA | Sri Lanka | UZB | Uzbekistan |
| COL | Colombia | MAR | Morocco | VEN | Venezuela |
| CRI | Costa Rica | MEX | Mexico | VNM | Viet Nam |
| CSHH | Czechoslovakia | MNG | Mongolia | XBT | Baltic countries |
| CSXX | Serbia and Montenegro | MYS | Malaysia | XCA | Rest of Central America |
| CUB | Cuba | NGA | Nigeria | XCI | Rest of CIS countries |
| CZE | Czech Rep. | NLD | Netherlands | XCS | Rest of Centeral Asia |
| DEU | Germany | NOR | Norway | XE10 | Rest of EU10 |
| DNK | Denmark | NZL | New Zealand | XENI | Rest of Annex I |
| DOM | Dominican Rep. | OMN | Oman | XER | Rest of Europe |
| DZA | Algeria | PAK | Pakistan | XME | Rest of East Middle |
| ECU | Ecuador | PAN | Panama | XOC | Rest of Oceania |
| EGY | Egypt | PER | Peru | XSA | Rest of South Asia |
| ESP | Spain | PHL | Philippines | XSE | Rest of Southeast Asia |
| FIN | Finland | POL | Poland | XSM | Rest of South America |
| FRA | France | PRK | Dem. People's Rep. of Korea | XSS | Rest of Africa |
| GBR | United Kingdom | PRT | Portugal | XYU | Rest of former Yugoslavia |
| GRC | Greece | QAT | Qatar | YEM | Yemen |
| GTM | Guatemala | ROU | Romania | ZAF | South Africa |
| HKG | China, Hong Kong SAR | RUS | Russian Federation |  |  |
| HRV | Croatia | SAU | Saudi Arabia |  |  |

(4) Base year (line 19)

Calibration year can be changed by writing the base year in this line.
(5) Target year (line 22)

Future target year can be changed by writing the final year in this line.
(6) Scenario code (line 25)

The scenario codes should be described after [\$setglobal SCENARIO_LIST]. If you deal with multiple scenarios, input all codes separated by a comma.
(7) GHG cap code (line 27)

The user can choose GHG emission cap or carbon tax scenario. If you want the cap scenario, the switch should be on. In addition, the actual cap should be ordered at the beginning of [CM.gms]
(8) GHG emission trading code (line 27)

The user can choose whether emission trading is available or not. If you want to install the emission trading mechanism, the switch should be on. In addition, you can determine the boundary of the emission trading capacity. It should be written in [scenario.gms] around line 575-580.

```
Whis file is an operatine file to conduct standard , WhithiE model.
*The standard i/hilioE model is apolicable to both sinele resion and wolld.
*This is controled by the follorming suritch.
*/f sou handle eloba/ model sifite "on" after "Elobal", othermise nfite "ff",
\$setglobal global on !! switch for global or local simulation; global [on /off]
*) When wou select slobal on, the resion number should be deternined.
*Whrite domy the number of resions after "pli"
\$setglobal RM 35
When wou select single country model, the resion showld be specified.
Whrite dowm the code of the tareet resion after 3.
\$setglobal Sr JPN
*The base vear for calibration can be chanered from 1971 to 21015
*hecify the base sear belom
\$setglobal base_year 2005
xheerify the target sear belor
\$setglobal target_year 2050
NFina//s, scenalos are myitten below.
```



```
\$setglobal SCENARIO_LIST BaU
*Before rannine this prosram make sure that
* vou have created scenario file in [.. 'scenaiolol directory
```

Figure 8 First part of [operation_file.gms]
An example is shown in the actual program, so it is recommended to refer to the program.

### 6.2.6. Scenario making

Each scenario should be written in individual gams program. In addition, the file name must be the same as you have named the scenario name in [operation_file.gms]. The files should be located in the [/scenario] directory. For example, example programs are the two scenarios "BaU" and "CM" as shown in [operation_file.gms]. There are two files [scenario/BAU.gms] and [scenario/CM.gms].

These scenario program files include assumptions for each scenario, such as GDP, energy use, and so on. The following is a list of the assumptions written into the programs.
(1) GHG emission constraint
(2) Labor stock
(3) Capital stock
(4) Target GDP growth rate
(5) TFP (Total Factor productivity)
(6) AEEI (Autonomous energy efficiency improvement)
(7) Biomass consumption reduction rate
(8) CCS technology on or off
(9) Renewable energy capacity

## 7. Result

If you operate the program by excel file [input_data.xlsm], the basic indicators are shown in the same file. Section 7.1 states how to see the [input_data.xlsm] results. In case you did not use that excel base operation, or you want to see more indicators, read section 7.2.

### 7.1. Simple excel file operation results

In the case of operating CGE model through a simple excel file namely [input_data.xlsm], we aim to reduce the workload for users in executing the model as well as checking so many related files. Therefore, we pick up some main analytical indicators and put the figures of their results into the "Basic information" sheet where users can see how their settings for the model would affect the results at the same time.

These chosen main indicators are:

- GDP: Gross Domestic Products
- TFC_f: Total Final Energy Consumption by economic sectors
- TPES_s: Total Primary Energy Supply by energy types
- POWER: Electricity generation
- GHG: total GHG emission
- PGHG: GHG emission price

For detail of more analytical indicators, please refer to section 7.2 and the excel file in output folder (namely "country_code".xlsm)

### 7.2. General results

After executing [operation_file.gms] without any errors, there are some results files or directories.
(1) [../output/country/"country_code"/"scenario_name"] directory contains all simulation results for each year. (currently counry_code is [JPN] and scenario_name is [BaU] and [CM])
(2) [../output/country/"country_code" / "country_code" "scenario_name".gdx] consists of the separated gdx files shown in (1).
(3) [../output/country/"country_code"/xls/"country_code".xlsm] contains the main indicators shown below.

Table 9 List of the sheets in excel files [../output/country/"country_code"/xls/"country_code".xlsm]

| Sheet name | contents |
| :--- | :--- |
| 2005_calibration | energy balance table ratio of original data to <br> model results in 2005 |
| 2005 _BaU | Energy balance table in 2005 |
| Kaya | Decomposition analys is |
| POP | Population |
| GDP | GDP |
| GDP_sh | GDP share |
| GHG | GHGemission CO2 equivalent |
| PGHG | GHGemission price |
| GHG_IMP | GHGemission trading (net import) |
| CO2 | Energy related CO2 emission by sectors |
| ELY_PRD | Electricity production |
| ELY_fire | Electricity production |
| TPES | Total primary energy supply |
| TFC | Total final enerygy consumption |
| TPES_s | Total primary energy supply by fuel |
| TFC_s | Total final enerygy consumption by fuel |
| Energy_intensity | Energy supply to GDP |
| GHG_intensity | GHGemission to GDP |
| POWER | Electricity production by power plants |

In sheet "Kaya", there are graphs drawing decomposition analysis. An example is shown below. The bar represents average annual change of GHG emission factors for each period. Table 10 lists the series used in decomposition analysis.


Figure 9 Decomposition analysis graph example
Table 10 series of decomposition

| Series name | contents |
| :--- | :--- |
| POP | Population |
| GDP/POP | GDP per capita |
| TFC/GDP | Total final energy consumption per GDP |
| TPE/TFC | Total primary energy supply per Total final enregy consumption |
| ENE_CO2/TPE | CO2 emission by fuel conbustion per total enregy supply |
| ALLGHG/ENE_CO2 | total GHGemission per CO2 emission by fuel conbustion |

(4) [../output/country/"country_code"/gdx/final_results.gdx] combines (2)'s scenario files. It has several key parameters. The definition of each parameter is described as below ${ }^{17}$.
[1] PSAM_value (5 dimensions; scenario, year, country, row and column )
Nominal SAM
[2] PSAM_tax (4 dimensions; scenario, year, country, row and column )
Sales Tax
[3] PSAM_price (4 dimensions; scenario, year, country, row and column )
Price of each cell in SAM
[4] PSAM_volume (4 dimensions; scenario, year, country, row and column )
Volume of SAM
[5] PEMI (4 dimensions; scenario, year, country, fuel and sectors)
Air pollutants and GHG emissions from each sector and fuel consumption
[6] PGHG (2 dimensions; scenario, year, country)
GHG emission price
[7] Psol_stat (3 dimensions; scenario, "solvestat or modelstat", "NLP or MCP")
Solution and model status
[8] Pworld_price (3 dimensions; scenario, year, commodities, "Import or export")

[^10]> World price
> [9] Penergy_b (4 dimensions; scenario, year, country, flow, energy sources)
> Energy balance table
> [10] Penergy_b_iea (4 dimensions; scenario, year, country, flow, energy sources)
> Energy balance table (sector definition is same as IEA's energy balance table )

The $9^{\text {th }}$ parameter, Penergy_b, represents energy balance table made from the estimated SAM. Classifications of the rows and columns are shown below ${ }^{18}$. The default version of this system inputs this energy balance table (BaU case year 2005) into [../output/country/xls/"country code".xls] of sheet " 2005 BaU ". An example is shown below.

The last parameter is similar to the previous one but the sector definition is different. A detailed explanation is shown in the next section.

Table 11 List of row and column components in energy balance table

|  | Row (Flow) | column (energy source) |  |  |
| :--- | :--- | :--- | :--- | :--- |
| code | description | code | description |  |
| PRD | Production | EB_F_COL | Coal |  |
| IMP | Import | EB_F_CRU | Crude oil |  |
| EXP | Export | EB_F_NGS | Natural gas |  |
| STC | Stock change | EB_F_OIL | Oil products |  |
| TPES | Total primary energy supply | EB_F_HYD | Hydropower |  |
| EB_PWR | Power plants (without CCS) | EB_F_NUC | Nuclear |  |
| EB_CCS | Power plants (with CCS) | EB_F_SPV | Solar |  |
| EB_PEN | Power plants (energy use) | EB_F_WIN | Wind |  |
| EB_P_C | Petroleum refinary and coal transformation | EB_F_GEO | Geothermal |  |
| EB_GWK | Gaswork | EB_F_ORN | Other reneable |  |
| EB_EMN | Fossil fuel mining | EB_F_BIO | Biomass |  |
| EB_LOSS | Distribution loss | EB_F_ELY | Electricity and Heat |  |
| EB_TFC | Total final consumption | EB_TOT | Total |  |
| EB_TIN | Total industry |  |  |  |
| EB_I_S | Iron and Steel |  |  |  |
| EB_NFM | Non-ferous metal |  |  |  |
| EB_CRP | Chemical |  |  |  |
| EB_NMM | Non-mineral and non-metaric |  |  |  |
| EB_MCH | Machinery |  |  |  |
| EB_OMN | Other mining |  |  |  |
| EB_FPR | Food processing |  |  |  |
| EB_TEX | Textile |  |  |  |
| EB_LUM | Wood product producer |  |  |  |
| EB_PPP | Paper, pulp and printing |  |  |  |
| EB_CNS | Construction |  |  |  |
| EB_XIN | Other industry |  |  |  |
| EB_TRS | Transport |  |  |  |
| EB_RSD | Residential |  |  |  |
| EB_SER | Commercial |  |  |  |
| EB_AGR | Agriculture |  |  |  |
| EB_NEU | Non-energy use |  |  |  |
|  |  |  |  |  |

[^11]Table 12 Example of energy balance table in 2005 USA

|  |  | Coal | Crude oil | Natural gas | Oil products | Hydropower | Nuclear | Solar | Wind | Geothermal | Other reneable | Biomass | Electricity and Heat | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | EB_F_COL | EB_F_CRU | EB_F_NGS | EB_F_OIL | EB_F_HYD | EB_F_NUC | EB_F_SPV | Eb_F_WIN | EB_F_GEO | EB_F_ORN | EB_F_BIO | EB_F_ELY |  |
| Production | PRD | 675099 | 362543 | 457124 |  | 29652 | 225430 | 2103 | 4840 | 34176 | 2248 | 11218 |  | 1804434 |
| Import | IMP | 30518 | 556139 | 108649 | 139611 |  |  |  |  |  |  |  | 4296 | 839212 |
| Export | ExP | -37973 | -8148 | -20782 | -91078 |  |  |  |  |  |  |  | -2735 | -160716 |
| Total primary energy supply | TPES | 667644 | 910534 | 544991 | 48533 | 29652 | 225430 | 2103 | 4840 | 34176 | 2248 | 11218 | 1561 | 2482930 |
| Power plants | EB PWR | -316636 |  | -170275 | -74698 | -29652 | -225430 | -2103 | -4840 | -34176 | -2248 | -11139 | 388819 | -482378 |
| Power plants (energy use) | EB_PEN |  |  |  |  |  |  |  |  |  |  |  | -20938 | -20938 |
| Petroleum refinary and coal transformation | EB_P_C | -163291 | -901666 | -20772 | 991131 |  |  |  |  |  |  |  |  | -94598 |
| Gaswork | EB GWK | -9028 |  | 45004 |  |  |  |  |  |  |  |  |  | 35977 |
| Fossil fuel mining | EB EMN | -6140 | -5156 | -29452 |  |  |  |  |  |  |  |  | -1923 | -42671 |
| distribution loss | EB_LOSS | -33599 | -3712 |  | -13533 |  |  |  |  |  |  |  | -6774 | -57618 |
| Total final consumption | EB_TFC | 138951 |  | 369497 | 951433 |  |  |  |  |  |  | 79 | 360744 | 1820704 |
| Total industry | EB_TIN | 108359 |  | 115887 | 184892 |  |  |  |  |  |  | 49 | 92618 | 501804 |
| Iron and Steel | EB_I_S | 6637 |  | 10228 | 6688 |  |  |  |  |  |  | 0 | 6735 | 30287 |
| Non-ferous metal | EB_NFM | 7193 |  | 6878 | 2561 |  |  |  |  |  |  | 1 | 6877 | 23510 |
| Chemical | EB_CRP | 12870 |  | 27385 | 129827 |  |  |  |  |  |  | 2 | 22601 | 192686 |
| Non-mineral and non-metaric | EB_NMM | 15745 |  | 10218 | 5732 |  |  |  |  |  |  | 1 | 4220 | 35916 |
| Machinery | EB_MCH | 7126 |  | 13096 | 6964 |  |  |  |  |  |  | 0 | 14072 | 41259 |
| Other mining | EB_OMN | 6248 |  | 2091 | 2846 |  |  |  |  |  |  |  | 2459 | 13645 |
| Food processing | EB_FPR | 10008 |  | 14236 | 5764 |  |  |  |  |  |  | 2 | 8069 | 38079 |
| Textile | EB_TEX | 6207 |  | 3507 | 2311 |  |  |  |  |  |  | 0 | 2888 | 14913 |
| Wood product producer | EB_LUM | 6122 |  | 2998 | 3644 |  |  |  |  |  |  | 10 | 3086 | 15859 |
| Paper, pulp and printing | EB_PPP | 10717 |  | 13438 | 8446 |  |  |  |  |  |  | 28 | 11332 | 43962 |
| Construction | EB_CNS | 6477 |  | 1774 | 2426 |  |  |  |  |  |  | 0 | 1290 | 11967 |
| Other industry | EB_XIN | 13008 |  | 10040 | 7682 |  |  |  |  |  |  | 5 | 8987 | 39721 |
| Transport | EB_TRS |  |  | 19126 | 384227 |  |  |  |  |  |  | 10 | 1399 | 404762 |
| Residential | EB_RSD | 9378 |  | 161591 | 318109 |  |  |  |  |  |  | 18 | 150098 | 639194 |
| Commercial | EB_SER | 9548 |  | 72892 | 40291 |  |  |  |  |  |  | 3 | 111541 | 234275 |
| Agriculture | EB_AGR | 11666 |  |  | 23915 |  |  |  |  |  |  |  | 5088 | 40669 |
| Total (TPES-TFC+Energy transformation) | TOT | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |  |

The way to convert CGE model variables to an energy balance table is shown below. In the Table 13, the numbers are written for each cell and the number corresponds to Table 14. Table 14 shows correspondence from CGE variables to the energy balance table. Sectors and energy sources mapping are show in Table 15 and Table 16.

Table 13 Cell numbers of energy balance table


Table 14 List of the correspondence for energy balance table and CGE model variables

| Cell | Equation (Variable) | Memo |
| :---: | :--- | :--- |
| 1 | $=Q X_{r, c}$ | domestic output of commodity, (Only <br> crude fossil fuel) |
| 2 | $=Q X A C_{r, a " c o m \_e l y "} *$ ele_factor $_{a}$ | output quantity of electricity of activity a. <br> "ele_factor ${ }_{a}$ " is conversion factor; <br> nuclear=3, geothermal=10, biomass=3 |
| 3 | $=$ | Biomass and biomass electricity |


|  | $Q X A C_{r, " b i o ", " c o m \_e l y "}+\sum_{h} T B H_{r, h}+\sum_{a} T B I_{r, a}$ | generation |
| :---: | :---: | :---: |
| 4 | $=Q M_{r, c}$ | Import quantity of tradable commodity |
| 5 | $=-Q E_{r, c}$ | Export quantity of tradable commodity (negative) |
| 6 | $=s t c k_{r, c}$ | Stock change (exogenous) |
| 7 | =PRD+IMP-EXP+STC | (1+2+3+4+5+6) |
| 8 | $=Q I N T_{r, c, a}$ | Intermediate inputs of the fossil fuel (only fired- power plants without CCS) |
| 9 | $=Q^{\prime} A C_{r, a,{ }^{\prime} \text { com_ely" }} *$ ele_factor ${ }_{a}$ | Output quantity of electricity of activity a. "ele_factor ${ }_{a}$ " is conversion factor; nuclear $=3$, geothermal $=10$, biomass $=3$ |
| 10 | $=\sum_{a} Q X A C_{r, a, " c o m_{-} \text {ely" }}$ | Summation of electricity output (without CCS) |
| 11 | $=Q I N T_{r, c, a}$ | Intermediate inputs of the fossil fuel (only fired- power plants with CCS) |
| 12 | $=Q X A C^{r, a,{ }^{\prime} \text { com_ely" }}$ * ele_factor ${ }_{a}$ | Output quantity of electricity of activity a (only biomass). "ele_factor ${ }_{a}$ " is conversion factor; biomass $=3$ |
| 13 | $=\sum_{a} Q X A C_{r, a, " c o m_{-} e l y "}$ | Summation of electricity output (with CCS) |
| 14 | $=-\sum_{a} Q I N T_{r, " c o m \_e l y ", a}$ | Electricity consumption by power sectors |
| 15 | $=-$ QINT $T_{r, c,{ }^{\prime} p_{-}{ }^{\prime \prime}}$ | Intermediate inputs of the fossil fuel into petroleum refinery "P C" |
| 16 |  | Output of "P_C" minus input of oil products "COM P C" |
| 17 | $=-$ QINT $T_{r, c,}{ }^{\prime} p_{-}{ }^{\prime}$ " | Intermediate inputs of the fossil fuel of petroleum refinery "GDT" |
| 18 | $=$ QINT $T_{r, " c o m \_g a s ", ~ " g d t " ~}+$ QXAC $C_{r, ~ " g d t ", " c o m \_g d t " ~}$ | Output of "COM_GDT" minus input of natural gas "COM GAS" |
| 19 | $=-Q I N T T_{r, c, a}$ | Intermediate inputs of the energy products into fossil fuel mining sector "COA", "OIL", "GAS" |
| 20 | $=-\operatorname{loss}_{r, c}\left(\sum_{a} Q X A C_{r, c, a}+Q M_{r, c}\right)$ | (Production + import) multiplied by loss rate |
| 21 | $=$ QINT $_{r,, c, a} *\left(1-n o n \_\right.$energy_rate $\left.{ }_{r, c, a}\right)$ | Intermediate inputs of the energy products (excluding non-energy use) |
| 22 | $=Q H_{r, c, h}+$ QINT $_{r, c, *}{ }^{\text {rrs }}$ " $*$ road_rate $_{r, c}$ | Transport sector's energy use + household fuel use by car |
| 23 |  | Household consumption - household fuel use by car |
| 24 | $=$ QINT $_{r, c, a} *$ non_energy_rate ${ }_{r, c, a}$ | Intermediate inputs of the energy products multiplied by non-energy use rate |

Note:
(1) Export includes international marine and aviation bunkers
(2) Oil products includes petroleum products and coal products

Table 15 Sector mapping table

| energy balance table sector |  |  | CGE activity |
| :---: | :---: | :---: | :---: |
| Transformation | EB_PWR | Power plants without CCS | E_COL |
|  |  |  | E_OIL |
|  |  |  | E_GAS |
|  |  |  | E_NUC |
|  |  |  | E_HYD |
|  |  |  | E_GEO |
|  |  |  | E_SPV |
|  |  |  | E_ORN |
|  |  |  | E_WIN |
|  |  |  | E_BIO |
|  |  |  | E_ORN |
|  | EB_CCS | Power plants with CCS | EC_COL |
|  |  |  | EC_OIL |
|  |  |  | EC_GAS |
|  |  |  | EC_BIO |
|  | EB_P_C | Petroleum refinary and coal transformation | P_C |
|  | EB_GWK | Gaswork | GDT |
|  | EB_EMN | Fossil fuel mining | COA |
|  |  |  | OIL |
|  |  |  | GAS |
| Industry | EB_I_S | Iron and Steel | I_S |
|  | EB_NFM | Non-ferous metal | NFM |
|  | EB_CRP | Chemical | CRP |
|  | EB_NMM | Non-mineral and non-metaric | NMM |
|  | EB_MCH | Machinery | MCH |
|  | EB_OMN | Other mining | OMN |
|  | EB_FPR | Food processing | FPR |
|  | EB_TEX | Textile | TEX |
|  | EB_LUM | Wood product producer | LUM |
|  | EB_PPP | Paper, pulp and printing | PPP |
|  | EB_CNS | Construction | CNS |
|  | EB_XIN | Other industry | OMF |
| Transport | EB_TRS | Transport | TRS |
| Commercial | EB_SER | Commercial | CSS |
|  |  |  | WTR |
| Agriculture | EB_AGR | Agriculture | AGR |
|  |  |  |  |
| Residential | EB_RSD | Residential | HURB |

Table 16 Energy source mapping

| energy balance table energy sources | CGE commodity |
| :--- | :--- |
| EB_F_COL | Coal |
| EB_F_CRU | Crude oil |
| EB_F_NGS | Natural gas |
| EB_F_OIL | Oil products |
| EB_F_ELY | Electricity and Heat |

## References

[1] T. Masui, Y. Matsuoka, M. Kainuma, (2006) Long-term CO2 emission reduction scenarios in Japan, Environmental Economics and Policy Studies, Volume 7, Number 3, 347-366.
[2] Lofgren H., R. L. Harris and S. Robinson (2002); A Standard Computable General Equilibrium (CGE) model in GAMS, IFPRI.
[3] Hyman, R.C., J.M. Reilly, M.H. Babiker, A. De Masin, and H.D. Jacoby, (2003); Modeling non-CO2 greenhouse gas abatement. Environmental Modeling and Assessment, 8: 175-186.
[4] Bond, T.C., E. Bhardwaj, R. Dong, R. Jogani, S. Jung, C. Roden, D.G. Streets, S. Fernandes, and N. Trautmann, (2007); Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850-2000. Global Biogeochemical Cycles 21: GB2018, doi:10.1029/2006GB002840.
[5] EEA (Europe Environmental Agency) (2009); EMEP/EEA air pollutant emission inventory guidebook 2009, No. 9.
[6] IPCC, (2006); IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds). Published: IGES, Japan
[7] United Nations, (2008); World Population Prospects, The 2008 Revision Population Database.

Appendix (Mathematical statement)
(1) SETS
$a \in A$ : a set of activities
$a \in \operatorname{ACES}(\subset A)$ : a set for non-energy transformation
$a \in A L E A(\subset A):$ a set for energy transformation
$a \in A L E O_{\_} E N E(\subset A)$ : a set of activities with a CES function at energy nest
$a \in A C E S \_E N E(\subset A)$ : a set of activities with a CES function at energy nest
$c \in C F F$ : a set of fossil fuel commodities (COA, OIL, GAS, P_C, GDT)
$c \in C$ : a set of commodities (also referred to as $c^{\prime}$ and $C^{\prime}$ )
$c \in C E(\subset C):$ a set of exported commodities (with domestic production)
$c \in C M(\subset C)$ : a set of imported commodities
$c \in C D(\subset C)$ : a set of commodities with domestic sales of domestic output
$c \in C X(\subset C)$ : a set of commodities with domestic output
$c \in C N E N$ : a set of non-energy commodities
$c \in E N E$ : a set of energy commodities (COA, OIL, GAS, P_C, ELY, GDT)
$c \in C E N(\subset C)$ : non-exported commodities (complement of CE)
$c \in C D N(\subset C)$ : commodities without domestic market sales of domestic output (complement of CD)
$c \in C M N(\subset C)$ : a set of non-imported commodities
$c \in C \_T R S$ : a set of transport service
emcm $\in E M C M$ : a set of emission reduction counter measures (CCS)
emcm $\in E M C M 0(\subset E M C M):$ a subset of emission reduction counter measures which are for non-energy related emissions
emcm $\in E M C M 1(\subset E M C M):$ a subset of emission reduction counter measures which are for energy related emissions
emcm $\in E M C M 2(\subset E M C M)$ : a subset of emission reduction counter measures which are for biomass power plant absorption

$$
\begin{aligned}
& f \in F(=F '): \text { a set of factors } \\
& f \in F C A P(=F): \text { A set of capital (new and old; "ncap" and "cap") } \\
& r \in R: \text { a set of regions } \\
& i \in I N S: \text { a set of institutions (domestic and rest of the world) } \\
& i \in I N S D(\subset I N S): \text { a set of institutions (domestic and rest of the world) } \\
& i \in I N S D N G(\subset I N S D): \text { a set of domestic nongovernment institutions } \\
& h \in H(\subset I N S D N G): \text { a set of households } \\
& g \in G: \text { a set of emission gases } \\
& g \in G^{C O 2}: \text { a set of } \mathrm{CO}_{2}
\end{aligned}
$$

$$
\text { aagg } \in \text { Aagg }: \text { a set of aggregated activity }
$$

## (2) PARAMETERS

1) Latin letters
bioc $_{r, a c}$ : biomass consumption coefficient to the activity level of sector ac
biod $_{r, a c}$ : decreasing rate of biomass consumption of sector $a c$
crt_in $r_{r}$ : transfer from rest of the world
crt_out : transfer to rest of the world
$c w t s_{r, c}$ : weight of commodity c in the consumer price index
$d w t s_{r, c}$ : weight of commodity $c$ in the producer price index
dis_imp $_{r, c}$ : price difference of the import commodity $c$
dis_exp ${ }_{r, c}$ : price difference of the export commodity $c$
efacl $_{r, a c, g}$ : emission factors for emissions related to activity level by sector $a c$
$e^{e f b i o_{r, a c, g}}$ : emission factors for emissions fossil fuel combustion by sector $a c$
efff $c_{r, c, a c, g}$ : emission factors for emissions fossil fuel combustion by sector ac consuming of goods $c$
efit $t_{c}$ : emission coefficient of international bankers
$e^{e n u r_{r, c, a c}}$ : energy-used ratio (1-non-energy-use ratio)
ewts $s_{r, c}$ : weight of commodity c in the export price index
$g w p_{g}$ : global warming potential of gas $g$
$g w t s_{r, c}$ : weight of commodity c in the governement price index
ica $_{r, c, a}$ : quantity of $c$ per unit of aggregate intermediate input $a$
iene $_{r, c, a}$ : energy commodity consumption ratio
iena $_{r, a}$ : quantity of aggregate energy input per activity unit
inta $_{r a}$ : quantity of aggregate non-energy intermediate input per activity unit
ires $_{r, a}$ : quantity of aggregate resource input per activity unit
iva $_{r, a}$ : quantity of value-added per activity unit
ivae $_{r, a}$ : quantity of value-added energy composite per activity unit
$i^{i w t s_{r, c}}$ : weight of commodity c in the capital formation price index
$m w t s_{r, c}$ : weight of commodity c in the import price index
$m p s 01_{r, i}: 0-1$ parameter with 1 for institutions with potentially flexed direct tax rates
loss $_{r, c}$ : distribution loss rate
$p c_{c}$ : carbon fraction
pco ${ }_{c}$ : $\mathrm{CO}_{2}$ emission coefficient
$p d d_{r, c}^{p r e}$ : Previous year's domestic demand price of commodity $c$
$p d s_{r, c}^{p r e}$ : Previous year's domestic supply price of commodity $c$
$p e_{r, c}^{\text {pre }}$ : Previous year's export price of commodity $c$
$p^{\prime \prime} \operatorname{lag}_{c, a}$ : flag for fossil fuel transformation
$p f d q_{r, c a c}$ : price differences of commodity price among inputs sectors
$p m_{r, c}^{p r e}$ : Previous year's import price of commodity $c$
pxac ${ }_{r, a, c}^{p r e}$ : Previous year's producer price of commodity $c$ for activity $a$
quotaqa ragg,aagg: quota of aggregated ragion ragg and aggregated activity aagg
renew_up $p_{r, a}$ : capacity of the activity level $a$ (for power sector energy)
sh_ely_up $p_{r, a}$ : Power generation share of activity $a$
stch $_{r, c}$ : stock change of commodity c (positive)
stch2 $2_{r, c}$ : Stock change of commodity $c$ (negative)
shif $_{r, i, f:}$ share of domestic institution $i$ in income of factor f
shii_resource $e_{r, i}$ : a ratio of transfer to institution i of total transfer in a country
shii_use $_{r, i}$ : share of net income of $i$
shincome $_{r, i}$ : total income share of GHG emission cost for institution $i$
shres $_{r, i}$ : resource income share of institution $i$
$t a_{r, a}$ : tax rate for activity
$t e_{r, c}$ : export tax rate
$t f_{r, f}$ direct tax rate for factor $f$
tins $01_{r, i}: 0.1$ parameter with 1 for institutions with potentially flexed direct tax rates
$t m_{r, c}:$ import tariff rate
$t q_{r, c, a c}$ : rate of sales tax (as share of composite price inclusive of sales tax). Suffix ac includes activity $a$ and institution $i$
transfr_crt_in ${ }_{r}$ : current transfer from rest of the world
transfr_crt_out : current transfer to rest of the world
transfr_ $f_{r, f}$ f factor transfer from abroad
transfr $r_{r, f}$ factor transfer to abroad
$t s h_{c}$ : share of international trade service to world total international trade service
$t v a_{r, a}$ : rate of value-added tax for activity a
$t w_{r, c}$ : international trade cost ratio
capital_stock ${ }_{r}^{t}$ : capital stock in time $t$ and region $r$
$d e p_{r}^{t}$ : capital depreciation rate in time $t$ and region $r$
labor _stock ${ }_{r}^{t}$ : labor stock in time $t$ and region $r$
$l a b \_g r_{r}^{t}$ : labor stock (annual) growth rate in time $t$ and region $r$
$g d p_{-} g r_{r}^{t^{*}}$ : GDP growth target (annual growth rate)
$f a c_{\_} g r_{r, f}^{t}$ : Factor input growth rate (calculated by 5.1 and 5.2)
aeeir $i_{r, a c}^{t}$ : annual AEEI rate of energy commodity $c$, sector $a c$, time $t$ and region $r$
2) Greek letters
$\alpha_{r, a}^{f}$ : efficiency parameter in the CES capital input function,
$\alpha_{r, a}^{v a e}:$ efficiency parameter in the CES energy and value-added function
$\alpha_{r, a}^{v a}$ : efficiency parameter in the CES value-added function
$\alpha_{r, a}^{e l}$ : efficiency parameter in the CES energy input function
$\alpha_{r, a}^{f f}$ : shift parameter for domestic commodity aggregation function
$\alpha_{r, c}^{a c}$ : shift parameter for domestic commodity aggregation function
$\alpha_{r, c}^{t}:$ a CET function shift parameter
$\alpha_{r, c}^{q}$ : an Armington function shift parameter
$\beta_{r, c, h}^{m}$ : marginal share of consumption spending on marketed commodity c for household $h$
$\gamma_{r, c, h}^{m}$ : subsistence consumption of marketed commodity $c$ for household $h$
$\lambda_{c}^{w}$ : depreciation rate of traded commodity $c$
$\rho_{r, a}^{f}:$ CES capital input function exponent.
$\rho_{r, a}^{v a e}:$ CES energy and value-added function exponent
$\rho_{r, a}^{v a}$ : CES value-added function exponent
$\rho_{r, a}^{e l}$ : CES energy input function exponent
$\rho_{r, a}^{f f}$ : domestic commodity aggregation function exponent
$\rho_{r, c}^{a c}$ : domestic commodity aggregation function exponent
$\rho_{r, c}^{t}:$ a CET function exponent
$\rho_{r, c}^{q}$ : an Armington function exponent
$\delta_{r, a}^{f}: \mathrm{CES}$ capital input function share parameter,
$\delta_{r, a}^{v a e}$ : CES energy and value-added function share parameter in activity a
$\delta_{r, a}^{v a}:$ CES value-added function share parameter for factor f in activity a
$\delta_{r, a}^{e l}:$ CES energy input function share parameter
$\delta_{r, c, a}^{f f}$ : shift parameter for domestic commodity aggregation function
$\delta_{r, a, c}^{a c}$ : shift parameter for domestic commodity aggregation function
$\delta_{r, c}^{t}$ : a CET function share parameter
$\delta_{r, c}^{q}$ : an Armington function share parameter
$\theta_{r, a, c}$ : yield of output c per unit of activity $a$
$\psi_{r, a, c}^{a c}:$ Previous year's share of the commodity $c$ produced by activity $a$
$\psi_{r, c}^{t}$ : Previous year's share of export to domestically produced commodity $c$
$\psi_{r, c}^{m}$ : Previous year's share of import to domestically produced commodity $c$
$\eta_{r, a, c}^{a c}$ : Elasticity of domestic commodity aggregation
$\eta_{r, c}^{t}$ : Elasticity of domestic produced commodity aggregation
$\eta_{r, c}^{m}$ : Elasticity of domestic consumption commodity aggregation
$\chi_{r, a, g}:$ reference case emission reduction coefficient
$\sigma_{r, a, g}^{g h g}$ :relasticity of the additional emission reductions of non-energy related emissions
(3) Exogenous variables
$\overline{D T I N S}_{r, i}$ :change in domestic institution tax share ( $=0$ for base; exogenous variable)
$\overline{F_{S A V}^{r}}{ }_{r}$ :foreign savings (FCU) (exogenous variable)
$\overline{G A D J_{r}}$ : government consumption adjustment factor (exogenous variable)
$\overline{g^{g h c_{r}}}$ : GHG emission constraint
$\overline{\text { ghgt_imp_cap }}$ : GHG emission trading (import) limit
$\overline{\text { ghgt_exp_cap }}$ : GHG emission trading (export) limit
ghgtot_c : global GHG emission constraint
$m p s_{r, i}$ : base savings rate for domestic institution i
$\overline{M P S A D J_{r}}$ : savings rate scaling factor ( $=0$ for base)
$\overline{Q F S}_{r, f}$ : quantity supplied of factor (exogenous variable)
$\overline{q g_{r, c}}:$ government consumption adjustment factor (exogenous variable)
$\overline{\text { qinv } v_{r, c}}$ : base-year quantity of fixed investment demand
$\overline{\text { tins }_{r, i}}$ : rate of direct tax on domestic institutions i
$\overline{\text { TINSADJ }_{r}}$ : direct tax scaling factor ( $=0$ for base; exogenous variable)
trnsfr_CRT $r_{r, " g o v "}:$ governmental transfer in base year
(4) Endogenous variables
$A D E E I_{r, a}$ : Additional energy efficiency improvement coefficient
$C P I_{r}$ : consumer price index (exogenous variable)
$D P I_{r}$ : producer price index for domestically marketed output
$D^{2} S_{r}:$ :-1 parameter with 1 for institutions with potentially flexed direct tax rates
$E G_{r}$ : government expenditures
$E M A L I_{r, a, g}$ : emissions non-energy related emission by industrial activity $a$
EMFFINT: emission from international bankers
$E H_{r, h}$ : household consumption expenditures
$E M A L H_{r, h, g}$ : emissions related to activity level by household $h$
$E M F F I_{r, c, a, g}$ : emissions related to fossil fuel combustion emitted by industrial activity $a$ consuming of goods $c$
$E M F F H_{r, c, h, g}$ : emissions related to fossil fuel combustion emitted by household $h$ consumption of goods $c$
$E M B I I_{r, a, g}$ : emissions related to biomass combustion emitted by industrial activity $a$
$E M B I H_{r, h, g}$ : emissions related to biomass combustion emitted by household $h$
$E P I_{r}$ : export price index
$E X R_{r}$ : exchange rate country $r$
$G P I_{r}$ : Governement price index
GHGCA_NENE $E_{r, a}$ : GHG emission cost related biomass burning and CCS negative emissions of activity $a$ in region $r$

GHGCA_ENE $E_{r, a, c}$ : GHG emission cost related to energy consumption
GHG_IMP : GHG emission credit import (net)
GHGCH $_{r, h}$ : GHG emission cost of household $h$ in region $r$
GHGTCOST : GHG emission cost
$G H G T_{r}$ : GHG emission from region $r\left(\mathrm{CO}_{2}\right.$ equivalent $)$
$G H G T_{-} C T_{r}$ : GHG emission from region $r\left(\mathrm{CO}_{2}\right.$ equivalent) includes emission permit import
$G S A V_{r}$ :government savings
$I A D J_{r}$ : investment adjustment factor (exogenous variable)
$I P I_{r}$ : Capital formation price index
$M P I_{r}$ : import price index
$M P S_{r, i}$ : marginal propensity to save for domestic nongovernment institution (exogenous variable)
$N E R E D_{r, a, g}$ : emission reduction caused by the ghg emission price
$P A_{r, a}$ : activity price (gross revenue per activity unit)
$P V A E_{r, a}$ : price of (aggregate) energy and value-added bundle (non-energy transformation sector)
$P D D_{r, c}$ : demand price for commodity produced and sold domestically
$P D S_{r, c}$ : supply price for commodity produced and sold domestically
$P E_{r, c}$ : export price of commodity $c$
$P E N E_{r, a}$ : price of (aggregate) energy input
$P E N E_{r, h}^{\text {bau }}$ : Energy price (BaUcase)
$P E N E \_H_{r, h}$ : Energy price of household
PENE _ $H_{r, a}^{\text {bau }}$ : Energy price of household (BaUcase)
$P F F L_{r, a}$ : price of (aggregate) fossil fuel input
$P^{2} H G_{r}$ : GHG emission price in region $r$ (US\$/tC)
$P G H G_{-} G_{r}$ : global GHG emission price
PGHG_IMP_QUO_: GHG emission price generated by import quota
PGHG_EXP_QUOr: GHG emission price generated by export quota
$P G H G_{-}$: GHG emission price corresponding to the global emission constraint
PINTA $_{r, a}$ : aggregate intermediate input price for activity $a$
$P M_{r, c}$ : composite commodity price (including import tax and transaction costs)
$P Q_{r, c}$ : composite commodity price excluding sales tax
$P Q D_{r, c}$ : composite commodity price excluding sales tax
$P R E S_{r, a}$ : price of resource input
$P T R S_{c}$ : price of international trade service
$P V A_{r, a}$ : price of (aggregate) value-added
$P W M_{c}$ : world import price (c.i.f) of commodity c
$P W E_{c}$ : f.o.b. export world price
$P X_{r, c}$ : aggregate producer price for commodity
$P X 2_{r, c}$ : aggregate producer price for commodity including stoch change effects
$P X A C_{r, a, c}$ : producer price of commodity $c$ for activity $a$
$Q A_{r, a}$ : quantity (level) of activity
$Q D_{r, c}$ : quantity sold domestically of domestic output
$Q E_{r, c}$ : quantity of exports
QENE $\mathrm{r}_{\mathrm{r},}$ : quantity of (aggregate) energy input
$Q F_{r, f, a}$ : quantity demanded of factor f from activity a
$Q F F L_{r, a}$ : quantity of (aggregate) fossil fuel input
$Q G_{r, c}$ : government consumption demand for commodity
$Q H_{r, c, h}$ : quantity of consumption of marketed commodity $c$ for household $h$
QINT $T_{r, c, a}$ : quantity of commodity $c$ as intermediate input to activity $a$
QINTA $_{r, a}$ : quantity of aggregate intermediate input
QINV $V_{r, c}$ : quantity of fixed investment demand for commodity
$Q M_{r, c}$ : quantity of imports of commodity
$Q Q_{r, c}$ : quantity of goods supplied to domestic market (composite supply)
$Q R E D_{r, e m c m, a}$ : input of counter emission reduction counter measures of activity $a$ and measure emcm
$Q R E S_{r, a}$ : quantity of resource input
$Q T R S_{c}$ : quantity of international trade service
$Q V A_{r, a}$ : quantity of (aggregate) value-added
$Q V A E_{r, a}$ : quantity of (aggregate) energy and value-added bundle (non-energy transformation sector)
$Q W M_{r, c}$ : quantity of imports of commodity
$Q W E_{r, c}$ : quantity of exports of commodity
$Q X_{r, c}$ : aggregate marketed quantity of domestic output of commodity
$Q X 2_{r, c}$ : aggregate marketed quantity of domestic output of commodity including stock change
$Q X A C_{r, a, c}$ : marketed output quantity of commodity $c$ from activity $a$
$R Q U O Q A_{r, a}$ : Shadow subsidies of the fixed activity level
$S^{\prime} H A C_{r, a, c}$ : share of the commodity $c$ produced by activity $a$
$S H Q E_{r, c}$ : share of domestically sold and export commodity $c$
SHQM: share of domestically sold and imported commodity $c$
SURGHG ${ }_{r, e m c m, a}$ : Complementary variable for the upper boundary of the counter measure installation
$T B H_{r, h}$ : biomass consumption by household $h$
$T B I_{r, a}$ : biomass consumption by activity $a$
TINS $_{r, i}$ : direct tax rate for institution $i$
TRII_Resource ${ }_{r, i}$ : transfers to institution $i$
TRII_Use ${ }_{r, i}$ : transfers from institution $i$
VRENCAP $_{r, a}$ : Rent of electricity capacity activity $a$ in region $r$
VRENCAPTOT: rent related to electricity capacity
$W F_{r f}$ : average price of factor
WFDIST $_{r, f, a}$ : factor price distortion factor for factor f in activity $a$
$Y G_{r}$ : government revenue
$Y F_{r, f}$ income of factor $f$
$Y I_{r, i}$ : income of institution $i$ (in the set INSDNG)
$Y I F_{r, i, f}$ income to domestic institution $i$ from factor $f$
(5) EQUATION

## Import Price

$$
P M_{r, c}=P W M_{c} \cdot d i s_{-} i m p_{r, c} \cdot\left(1+t m_{r, c}\right) \cdot E X R_{r}, \quad \forall c \in C M
$$

## Export Price

$$
P E_{r, c}=P W E_{c} \cdot \text { dis_}_{-} \exp _{r, c} \cdot\left(1-t e_{r, c}\right) \cdot \overline{E X R_{r}}, \quad \forall r \in R, c \in C E
$$

Demand Price of Domestic Non-traded Goods

$$
P D D_{r, c}=P D S_{r, c}, \quad \forall r \in R, c \in C D
$$

## Absorption

$$
P Q_{r, c} \cdot Q Q_{r, c}=P D D_{r, c} \cdot Q D_{r, c}+P M_{r, c} \cdot Q M_{r, c}, \quad \forall r \in R, c \in(C D \cup C M)
$$

## Commodity market monetary balance

$$
P Q_{r, c} \cdot Q Q_{r, c}=P Q D_{r, c} \cdot\binom{\sum_{a \in A} p f d q_{r, c, a} \cdot Q I N T_{r, c, a}+\sum_{h \in H} p f d q_{r, c, c} \cdot Q H_{r, c, h}}{+p f d q_{r, c, " \text { "gov" }} \cdot Q G_{r, c}+p f d q_{r, c, " s-I^{\prime \prime}} \cdot Q I N V_{r, c}}, \quad \forall r \in R, c \in C X
$$

## Marketed Output with stock change

$$
Q X 2_{r, c}=Q X_{r, c}+\text { stch }_{r, c}, \quad \forall r \in R, c \in C X
$$

## Marketed Output Value with stock change

$$
P X 2_{r, c} \cdot Q X 2_{r, c}=P X_{r, c} \cdot Q X_{r, c}, \quad \forall r \in R, c \in C X
$$

## Marketed Output Value

$$
P X 2_{r, c} \cdot Q X 2_{r, c}=P D S_{r, c} \cdot Q D_{r, c}+P E_{r, c} \cdot Q E_{r, c}, \quad \forall r \in R, c \in C X
$$

Activity Price

$$
P A_{r, a} \cdot Q A_{r, a} \cdot\left(1+\text { RQUOQA }_{r, a}\right)=\sum_{c \in C} P X A C_{r, a, c} \cdot Q X A C_{r, a, c}, \quad \forall r \in R, a \in A
$$

## Aggregate Non-energy Intermediate Input Price

$$
\text { PINTA }_{r, a}=\sum_{c \in C N E N} P Q_{r, c} \cdot p f d q_{r, c, a} \cdot Q I N T_{r, c, a}\left(1+t q d_{r, c, a}\right) \cdot i c a_{r, c, a}, \quad \forall r \in R, a \in A
$$

## Activity Revenue and Costs (Non-energy transformation sector)

$$
\begin{aligned}
& P A_{r, a} \cdot\left(1-t a_{r, a}\right) \cdot Q A_{r, a}=P V A E_{r, a} \cdot Q V A E_{r, a}+P E N E_{r, a} \cdot Q E N E_{r, a}+\text { PRES }_{r, a} \cdot Q R E S_{r, a} \\
& \quad+G H G C A_{-} \text {NENE }_{r, a}+V R E N C A P_{r, a} \cdot Q A_{r, a}+\sum_{\text {emcm EEMCM }} Q R E D_{r, e m c m, a}, \quad \forall r \in R, a \in A C E S
\end{aligned}
$$

## Activity Revenue and Costs (Energy transformation sector)

$$
\begin{aligned}
P A_{r, a} \cdot\left(1-t a_{r, a}\right) \cdot Q A_{r, a}= & P V A_{r, a} \cdot Q V A_{r, a}+\text { PINTA }_{r, a} \cdot \text { QINTA }_{r, a}+P E N E_{r, a} \cdot Q E N E_{r, a} \\
+ & P R E S_{r, a} \cdot Q R E S_{r, a}+\text { GHGCA_ }_{-} \text {NENE }_{r, a}+\text { VRENCAP }_{r, a} \cdot Q A_{r, a} \sum_{\text {emcmeEMCM }} Q R E D_{r, e m c m, a}, \quad \forall r \in R, a \in A L E O
\end{aligned}
$$

## Resource Input Price

$$
P A_{r, a}=P R E S_{r, a}, \quad \forall r \in R, a \in A
$$

## Consumer Price Index

$$
C P I_{r}=\sum_{c \in C} P Q D_{r, c} \cdot d f p q_{r, c, \text { "hurb" }} \cdot\left(1+t q d_{r, c, \text { "hurb" }}\right) \cdot c w t s_{r, c} \quad \forall r \in R
$$

## Producer Price Index for Nontraded Market Output

$$
D P I_{r}=\sum_{c \in C} P D S_{r, c} \cdot d w t s_{r, c} \quad \forall r \in R
$$

Export Price Index

$$
E P I_{r}=\sum_{c \in C} P E_{r, c} \cdot e w t s_{r, c} \quad \forall r \in R
$$

Import Price Index

$$
M P I_{r}=\sum_{c \in C} P M_{r, c} \cdot m w t s_{r, c} \quad \forall r \in R
$$

Governmental consumption Price Index

$$
G P I_{r}=\sum_{c \in C} P Q D_{r, c} \cdot d f p q_{r, c, \text {,gov" }} \cdot\left(1+t q d_{r, c,, \text { "gov" }}\right) \cdot g w t s_{r, c} \quad \forall r \in R
$$

## Capital Formation Price Index

$$
I P I_{r}=\sum_{c \in C} P Q D_{r, c} \cdot d f p q_{r, c, " s-I{ }^{\prime \prime}} \cdot\left(1+t q d_{r, c, " g o v "}\right) \cdot i w t s_{r, c} \quad \forall r \in R
$$

Leontief Technology: Demand for Aggregate Value-Added (energy transformation sector)

$$
Q V A_{r, a}=i v a_{r, a} \cdot Q A_{r, a}, \quad \forall r \in R, a \in A L E O
$$

Leontief Technology: Demand for Aggregate energy Input (energy transformation sector)

$$
Q E N E_{r, a}=\text { iena }_{r, a} \cdot Q A_{r, a}, \quad \forall r \in R, a \in A L E O
$$

Energy and Value added Bundle (non-energy transformation sector)

$$
Q V A E_{r, a}=\text { ivae }_{r, a} \cdot Q A_{r, a}, \quad \forall r \in R, a \in A C E S
$$

Leontief Technology: Demand for Aggregate Non-energy Intermediate Input

$$
\text { QINTA }_{r, a}=\text { inta }_{r, a} \cdot Q A_{r, a}, \quad \forall r \in R, a \in A
$$

Leontief Technology: Demand for Resource Input

$$
\text { QRES }_{r, a}=\text { ires }_{r, a} \cdot Q A_{r, a}, \quad \forall r \in R, a \in A
$$

Energy and Value-Added composite

$$
Q V A E_{r, a}=\alpha_{r, a}^{v a e} \cdot\left(\left(\frac{Q E N E_{r, a}}{1-A D E E I_{r, a}}\right)^{-\rho_{r, a}^{m a e}}+Q V A_{r, a}^{-p_{r, a}^{m a e}}\right)^{-\frac{1}{p_{r, a}^{m a}}}, \quad \forall r \in R, a \in A C E S
$$

Energy and Value-added Input CES Technology: Energy - Value added -Input Ratio

$$
\frac{\left(\frac{\text { QENE }_{r, a}}{1-A D E E I_{r, a}}\right)}{Q V A_{r, a}}=\left(\frac{\delta_{r, a}^{v a e}}{1-\delta_{r, a}^{v a e}} \cdot \frac{P E N E_{r, a}}{P F F L_{r, a}}\right)^{\frac{1}{1+p_{r, a}^{\text {vae }}}}, \quad \forall r \in R, a \in A C E S
$$

Energy and Value-Added composite balance

$$
Q V A E_{r, a} \cdot P V A E_{r, a}=Q E N E_{r, a} \cdot P E N E_{r, a}+Q V A_{r, a} \cdot P V A_{r, a}, \quad \forall r \in R, a \in A C E S
$$

Additional energy efficiency improvement (Industry)

$$
A D E E I_{r, a}=1-\left(\frac{P E N E_{r, a}}{P E N E_{r, a}^{\text {bau }}}\right)^{-\sigma_{r, a}^{a f t}}, \quad \forall r \in R, a \in A C E S
$$

Energy and Value-Added composite (Non energy use sector)

$$
Q V A E_{r, a}=Q V A_{r, a}, \quad \forall r \in R, a \in A C E S
$$

## Value-Added and Factor Demands

$$
Q V A_{r, a}=\alpha_{r, a}^{v a} \cdot\left(\sum_{f \in F} \delta_{r, a}^{v a} \cdot Q F_{r, f, a} p^{-\rho_{r a}^{v a}}\right)^{-\frac{1}{p_{r, a}^{a}}}, \quad \forall r \in R, a \in A
$$

## Factor Demand

$$
\begin{gathered}
W F_{r, f} \cdot \text { WFDIST }_{r, f, a}=P V A_{r, a} \cdot\left(1-t v a_{r, a}\right) \cdot Q V A_{r, a} \cdot\left(\sum_{f \in F^{\prime}} \delta_{r, a}^{v a} \cdot Q F_{f r, a}^{-p_{r, a}^{u(a}}\right)^{-1} \cdot \delta_{r, a}^{v a} \cdot Q F_{r, f, a}^{-\rho_{r, a}^{m}-1}, \\
\forall r \in R, a \in A, f \in F
\end{gathered}
$$

## Capital aggregation: CES Function

$$
Q F_{r, " c c a p ", a}=\alpha_{r, a}^{f} \cdot\left(\delta_{r, a}^{f} \cdot Q F_{r, " n c a p ", a}{ }^{-\rho_{t, a}^{f}}+\left(1-\delta_{r, a}^{f}\right) \cdot Q F_{r, " c a p ", a}-\rho_{r, a}^{f}\right)^{-\frac{1}{\rho_{r, a}^{f}}}, \quad \forall r \in R, a \in A
$$

Capital aggregation of CES Technology: old and new capital - Input Ratio

$$
\frac{Q F_{r, " \text { "cap",a }}}{Q F_{r, " c a p ", a}}=\left(\frac{\delta_{r, a}^{f}}{1-\delta_{r, a}^{f}} \cdot \frac{W F_{r, ", c a p "} \cdot \text { WFDIST }_{r, " c a p ", a}}{W F_{r, " \text { ncap" }} \cdot \text { WFDIST }_{r, " n c a p ", a}}\right)^{\frac{1}{1+\rho \rho, a}}, \quad \forall r \in R, a \in A
$$

## Capital Input Costs

$$
Q F_{r, " c c a p ", a} \cdot \text { WF }_{r, " c c a p} \text { " } \text { WFDIST }_{r, " c c a p ", a}=\sum_{f \in F C A P} Q F_{r, f, a} \cdot \text { WF }_{r, f} \cdot \text { WFDIST }_{r, f, a} \quad \quad \forall r \in R, a \in A
$$

Disaggregated Intermediate Input Demand

$$
\text { QINT }_{r, c, a}=\text { ica }_{r, c, a} \cdot \text { QINTA }_{r, a}, \quad \forall r \in R, a \in A, c \in C N E N
$$

## Energy Input Technology: CES Function

$$
Q E N E_{r, a}=\alpha_{r, a}^{e l} \cdot\left(\delta_{r, a}^{e l} \cdot Q I N T_{r, e l y^{y}, a} \rho_{r, a}^{e l}+\left(1-\delta_{r, a}^{e l}\right) \cdot Q F F L_{r, a}^{-\rho_{r, a}^{a}}\right)^{-\frac{1}{\rho_{r, a}^{e l}}}, \quad \forall r \in R, a \in A C E S_{-} E N E
$$

## Energy Input CES Technology: Electricity - Fossil Fuel -Input Ratio

$$
\frac{Q I N T_{r, " e l y ", a}}{Q F F L_{r, a}}=\left(\frac{\delta_{r, a}^{e l}}{1-\delta_{r, a}^{e l}} \cdot \frac{P Q D_{r, " e l y "} \cdot\left(1+t q d_{r, " e l y, a, a}\right)}{P F F L_{r, a}}\right)^{\frac{1}{1+p_{r, a}^{e,}}}, \quad \forall r \in R, a \in A C E S_{-} E N E
$$

## Energy Input Costs

$$
\text { PENE }_{r, a} \cdot Q E N E_{r, a}=P Q_{r, " e l y ", a} \cdot\left(1+t q d_{r, " e l y, a}\right) \cdot Q I N T_{r, " e l y, a}+P F F L_{r, a} \cdot Q F F L_{r, a}, \quad \forall r \in R, a \in A C E S_{-} \text {ENE }
$$

Fossil fuel consumption and Its allocation

$$
Q F F L_{r, a}=\alpha_{r, a}^{f f} \cdot\left(\sum_{c \in C F F} \delta_{r, c, a}^{f f} \cdot Q I N T_{r, c, a}{ }^{-\rho_{r, a}^{f( }}\right)^{-\frac{1}{p_{r, a}^{f}}}, \quad \forall r \in R, a \in A C E S_{-} E N E
$$

First-Order Condition for Fossil Fuel Consumption

$$
\begin{aligned}
& P Q D_{r, c} \cdot d f p q_{r, c, a} \cdot\left(1+t q d_{r, c, a}\right)+ \text { GHGCA_} A_{-} \\
&=P N E_{r, c, a} \\
&=P F F L_{r, a} \cdot Q F F L_{r, a}\left(\sum_{c p \in C F F} \delta_{r, c p, a}^{f f} \cdot Q I N T_{r, c p, a}^{-p r, a}\right)^{\frac{1}{1+p_{r, a}^{d}}} \delta_{r, a, c}^{f f} \cdot Q I N T_{r, c, a}-p_{r, a}^{f f}-1
\end{aligned},
$$

## Energy Consumption of Energy Transformation sector

$$
\text { QINT }_{r, c, a}=\text { QENE }_{r, a} \cdot \text { iene }_{r, c, a}, \quad \forall r \in R, a \in A L E O_{-} E N E, c \in E N E
$$

## Energy Costs of Energy Transformation Sector

$$
P E N E_{r, a} \cdot Q E N E_{r, a}=\sum_{c \in E N E}\left\{P I N T_{r, c, a} \cdot\left(1+t q d_{r, c, a}\right) \cdot Q I N T_{r, c, a}+G H G C A_{-} E N E_{r, c, a}\right\}, \quad \forall r \in R, a \in A L E O_{-} E N E
$$

## Commodity Production and Allocation

$$
Q X A C_{r, a, c}=\theta_{r, a, c} \cdot Q A_{r, a}, \quad \forall r \in R, a \in A, c \in C X
$$

## Commodity Production and Allocation (non-energy commodities)

$$
Q X_{r, c}=\alpha_{r, c}^{a c} \cdot\left(\sum_{a \in A} \delta_{r, a, c}^{a c} \cdot Q X A C_{r, a, c}-\rho_{r, c}^{a c c}\right)^{-\frac{1}{\rho_{a, c}^{a c}}}, \quad \forall r \in R, c \in(C X-E N E)
$$

First-Order Condition for Output Aggregation Function (non-energy commodities)

$$
P X A C_{r, a, c}=P X_{r, c} \cdot Q X_{r, c} \cdot\left(\sum_{a p \in A} \delta_{r, a p, c}^{a c} \cdot Q X A C_{r, a p, c}^{-\rho_{r, a p}^{a c}}\right)^{-1} \cdot \delta_{r, a, c}^{a c} \cdot Q X A C_{r, a, c}^{--_{r, a}^{a c-1}}, \quad \forall r \in R, a \in A, c \in(C X-E N E)
$$

Share of Commodity Production and Allocation (energy commodities)

$$
S H A C_{r, a, c}=\frac{\psi_{r, a, c}^{a c}\left(\frac{P X A C_{r, a, c}}{p x a c_{r, a, c}^{p e}}\right)^{\eta_{r, a, c}^{a c}}}{\sum_{a p \in A} \psi_{r, a, c}^{a c}\left(\frac{P X A C_{r, a p, c}}{p x a c_{r, a p, c}^{p r}}\right)^{q_{r, a, c, c}^{a c}}}, \quad \forall r \in R, c \in(C X \cap E N E)
$$

Commodity Production and Allocation (energy commodities)

$$
Q X A C_{r, a, c}=Q X_{r, c} S H A C_{r, a, c}, \quad \forall r \in R, a \in A, c \in(C X \cap E N E) \text {, }
$$

Balance of the output and commodity aggregate (energy commodities)

$$
\sum_{a \in A} Q X A C_{r, a, c} \cdot P X A C_{r, a, c}=Q X_{r, c} P X_{r, c}, \quad \forall r \in R, c \in(C X \cap E N E),
$$

Output Transformation (CET) Function (Non-energy commodities)

$$
Q X 2_{r, c}=\alpha_{r, c}^{t} \cdot\left(\delta_{r, c}^{t} \cdot Q E_{r, c}^{\rho_{r, c}^{t}}+\left(1-\delta_{r, c}^{t}\right) \cdot Q D_{r, c}^{\rho_{r, c}^{t}}\right)^{\frac{1}{\rho_{r, c}}}, \quad \forall r \in R, c \in(C E \cap C D-E N E)
$$

## Export-Domestic Supply Ratio (Non-energy commodities)

$$
\frac{Q E_{r, c}}{Q D_{r, c}}=\left(\frac{P E_{r, c}}{P D S_{r, c}} \cdot \frac{1-\delta_{r, c}^{t}}{\delta_{r, c}^{t}}\right)^{\frac{1}{p_{t, c}-1}}, \quad \forall r \in R, c \in(C E \cap C D-E N E)
$$

Output Transformation for Domestically Sold Outputs Without Exports and for Exports Without Domestic Sales

$$
Q X 2_{r, c}=Q D_{r, c}+Q E_{r, c}, \quad \forall r \in R, c \in(C E \cap C E N) \cup(C D \cap C D N)
$$

Share of the Domestically sold and export (energy commodities)

$$
S H Q E_{r, c}=\frac{\psi_{r, c}^{t}\left(\frac{P E_{r, c}}{p e_{r, c}^{p r e}}\right)^{\eta_{r, c}^{t}}}{\psi_{r, c}^{t}\left(\frac{P E_{r, c}}{p e_{r, c}^{p r e}}\right)^{\eta_{t, c}^{t}}+\left(1-\psi_{r, c}^{t}\right)\left(\frac{P D S_{r, c}}{p d s_{r, c}^{p r e}}\right)^{\eta_{r, c}^{t}}}, \quad \forall r \in R, c \in(C E \cap C D \cap E N E)
$$

Exported energy commodities

$$
Q E_{r, c}=Q X 2_{r, c} \cdot S H Q E_{r, c}, \quad \forall r \in R, c \in(C E \cap C D \cap E N E)
$$

Domestically sold energy commodities

$$
Q D_{r, c}=Q X 2_{r, c} \cdot\left(1-S H Q E_{r, c}\right), \quad \forall r \in R, c \in(C E \cap C D \cap E N E)
$$

Composite Supply (Armington) Function (Non-energy commodities)

$$
Q Q_{r, c}=\alpha_{r, c}^{q} \cdot\left(\delta_{r, c}^{q} \cdot Q M_{r, c}^{-\rho_{r, c}^{q}}+\left(1-\delta_{r, c}^{q}\right) \cdot Q D_{r, c}^{-\rho_{r, c}^{q}}\right)^{-\frac{1}{\rho_{r, c}^{q}}}, \quad \forall r \in R, c \in(C M \cap C D-E N E)
$$

## Import-Domestic Demand Ratio (non-energy commodities)

$$
\frac{Q M_{r, c}}{Q D_{r, c}}=\left(\frac{P D D_{r, c}}{P M_{r, c}} \cdot \frac{1-\delta_{r, c}^{q}}{\delta_{r, c}^{q}}\right)^{\frac{1}{p_{, c, c}^{q}}}, \quad \forall r \in R, c \in(C M \cap C D-E N E)
$$

Composite Supply for Non-imported Outputs and Non-produced Imports

$$
Q Q_{r, c}=Q D_{r, c}+Q M_{r, c}, \quad \forall r \in R, c \in(C D \cap C M N) \cup(C M \cap C D N)
$$

Share of the domestically sold and imported (energy commodities)

$$
S H Q M_{r, c}=\frac{\psi_{r, c}^{m}\left(\frac{P M_{r, c}}{p m_{r, c}^{p r e}}\right)^{\eta_{r, c}^{m}}}{\psi_{r, c}^{m}\left(\frac{P M_{r, c}}{p m_{r, c}^{p r e}}\right)^{\eta_{r, c}^{m}}+\left(1-\psi_{r, c}^{m}\right)\left(\frac{P D D_{r, c}}{p d d_{r, c}^{p r e}}\right)^{\eta_{r, c}^{m}}}, \quad \forall r \in R, c \in(C M \cap C D \cap E N E)
$$

Imported energy commodities

$$
Q M_{r, c}=Q Q_{r, c} \cdot S H Q M_{r, c}, \quad \forall r \in R, c \in(C M \cap C D \cap E N E)
$$

Domestically sold energy commodities

$$
Q D_{r, c}=Q Q_{r, c} \cdot\left(1-S H Q M_{r, c}\right), \quad \forall r \in R, c \in(C M \cap C D \cap E N E)
$$

## Factor Income

$$
Y F_{r, f}=\sum_{a \in A} W F_{r, f} \cdot W F D I S T_{r, f, a} \cdot Q F_{r, f, a}+\text { transfr_} f_{r, f} \cdot E X R_{r}, \quad \forall r \in R, f \in F
$$

Institutional Factor Incomes

$$
Y I F_{r, i, f}=\operatorname{shif}_{r, i, f} \cdot\left(\left(1-t f_{r, f}\right) \cdot Y F_{r, f}-\text { transfr }_{r, f} \cdot E X R_{r}\right), \forall r \in R, i \in I N S D, f \in F
$$

Income of non-governmental domestic Institution

$$
\begin{aligned}
& Y I_{r, i}=\sum_{f \in F} \text { YIF }_{r, i, f}+\text { TRII_Resource }{ }_{r, i} \\
& + \text { shincome }_{r, i} \cdot \text { GHGTCOST }_{r}+\text { VRENCAPTOT }_{r, i} \\
& +\left(P G H G_{-} G+P G H G_{-} I M P_{-} Q U O_{r}-P G H G_{-} E X P_{-} Q U O_{r}\right) \cdot G H G_{-} I M P_{r} \cdot E X R_{r} \cdot \text { shincome }_{r, i} \\
& + \text { shincome }_{r, i} \cdot \sum_{a \in A} \sum_{\text {eтст } \in E M C M} Q R E D_{r, \text { emст }, a} \\
& + \text { shincome }_{r, i} \cdot \sum_{a \in A} \text { RQUOQA }_{r, a} \cdot Q A_{r, a} \cdot P A_{r, a} \\
& + \text { shres }_{r, i} \cdot \sum_{a \in A} \text { PRES }_{r, a} \cdot \text { QRES }_{r, a}, \quad \forall r \in R, i \in I N S D N G
\end{aligned}
$$

Total rent of electricity capacity

$$
\text { VRENCAPTOT }_{r, " \text { ent" }}=\sum_{a \in A} \text { VRENCAP }_{r, a} \quad \forall r \in R
$$

## Household Consumption Expenditures

$$
E H_{r, h}=\left(1-\text { shii_use }_{r, h}\right)\left(1-\text { MPS }_{r, h}\right) \cdot\left(1-\text { TINS }_{r, h}\right) \cdot Y I_{r, h}-G H G C H_{r, h}, \quad \forall r \in R, h \in H
$$

## Household Consumption Spending

$$
\begin{aligned}
& \left(P Q D_{r, c} \cdot d f p q_{r, c, h} \cdot\left(1+t q d_{r, c, h}\right)+\sum_{g \in G} P G H G_{r} \cdot g w p_{g} \cdot e f f f c_{r, c, h, g}\right) \cdot Q H_{r, c, h} \\
& =\left(P Q D_{r, c} \cdot d f p q_{r, c, h} \cdot\left(1+t q d_{r, c, h}\right)+\sum_{g \in G} P G H G_{r} \cdot g w p_{g} \cdot e f f f c_{r, c, h, g}\right) \cdot \gamma_{r, c, h}^{m} \cdot\left(1-A D E E I_{r, h}\right)^{-1}, \quad \forall r \in R, c \in C, \forall h \in H \\
& +\beta_{r, c, h}^{m} \cdot\left(E H_{r, h}-\sum_{c^{\prime} \in C}\left(P Q D_{r, c^{\prime}} \cdot d f p q_{r, c^{\prime}, h} \cdot\left(1+t q d_{r, c^{\prime}, h}\right)+\sum_{g \in G} P G H G_{r} \cdot g w p_{g} \cdot e f f f c_{r, c^{\prime}, h, g}\right) \cdot \gamma_{r, c^{\prime}, h}^{m} \cdot\left(1-A D E E I_{r, h}\right)^{-1}\right)
\end{aligned}
$$

## Additional energy efficiency improvement (Household)

$$
A D E E I_{r, h}=1-\left(\frac{P E N E \_H_{r, h}}{P E N E \_H_{r, h}^{\text {bau }}}\right)^{-\sigma_{r, h}^{\text {eff }}}, \quad \forall r \in R, h \in H
$$

## Energy price of household

$$
P E N E_{-} H_{r, h}=\frac{\sum_{c \in N E}\left(P Q D_{r, c} \cdot d f p q_{r, c, h} \cdot\left(1+t q d_{r, c, h}\right)+\sum_{g \in G} P G H G_{r} \cdot g w p_{g} \cdot e f f f c_{r, c, h, g}\right) \cdot Q H_{r, c, h}}{\sum_{c \in E N E} Q H_{r, c, h}}, \quad \forall r \in R, \forall h \in H
$$

## Investment Demand

$$
Q I N V_{r, c}=I A D J_{r} \cdot \overline{q i n v_{r, c}}, \quad \forall r \in R, c \in C
$$

## Government Consumption Demand

$$
Q G_{r, c}=\overline{\overline{G A D J}_{r}} \cdot \overline{q g_{r, c}}, \quad \forall r \in R, c \in C
$$

## Government Revenue

$$
\begin{aligned}
& Y G_{r}=\sum_{i \in I N S D N G} T I N S_{r, i} \cdot Y I_{r, i}+\sum_{f \in F} t f_{r, f} \cdot Y F_{r, f}+\sum_{a \in A} t a_{r, a} \cdot P A_{r, a} \cdot Q A_{r, a}+\sum_{a \in A} t v a_{r, a} \cdot P V A_{r, a} \cdot Q V A_{r, a} \\
& +\sum_{c \in C M} t m_{r, c} \cdot P W M_{c} \cdot Q M_{r, c} \cdot \overline{E X R}_{r}+\sum_{c \in C E} t e_{r, c} \cdot P W E_{c} \cdot Q E_{r, c} \cdot \overline{E X R}_{r} \\
& +\sum_{c \in C} \sum_{a \in A} t q d_{r, c, a} \cdot d f p q_{r, c, a} \cdot P Q D_{r, c} \cdot Q I N T_{r, c, a}+\sum_{c \in C} \sum_{h \in H} t q d_{r, c, h} \cdot d f p q_{r, c, h} \cdot P Q D_{r, c} \cdot Q H_{r, c, h} \\
& +\sum_{c \in C} t q d_{r, c, " g o v "} \cdot d f p q_{r, c, " g o v "} \cdot P Q D_{r, c} \cdot Q G_{r, c}+\sum_{c \in C} t q d_{r, c, " s-I^{\prime}} \cdot d f p q_{r, c, " S-I "} \cdot P Q D_{r, c} \cdot Q I N V_{r, c} \\
& +\sum_{f \in F} \text { YIF }_{r, g o v, f}+\text { TRII_Resource }_{r, \text { gov }} \\
& + \text { GHGTCOST }_{r} \cdot \text { shincome }_{r, \text {,gov" }} \\
& +G H G_{-} I M P_{r} \cdot E X R_{r} \cdot\left(P G H G_{-} G+P G H G_{-} I M P P_{-} Q U O_{r}-P G H G_{-} E X P P_{-} Q U O_{r}\right) \\
& \text { +shincome }_{r, \text { "gov" }} \cdot \sum_{a \in A} Q A_{r, a} \cdot \text { VRENCAP }_{r, a}+\text { shres }_{r, " \text { gov" }} \cdot \sum_{a \in A} \text { PRES }_{r, a} \cdot \text { QRES }_{r, a} \quad \forall r \in R
\end{aligned}
$$

## Government Expenditure

$$
E G_{r}=\sum_{c \in C} P Q D_{r, c} \cdot d f p q_{r, c, \text { "gov" }} \cdot\left(1+\text { tqd }_{r, c, \text { "gov" }}\right) \cdot Q G_{r, c}+\text { TRII_Use }_{r, \text { "gov" }} \quad \forall r \in R
$$

Transfer use

$$
\text { TRII_Use }_{r, i}=\text { shii_use }_{r, i} \cdot\left(1-\text { MPS }_{r, i}\right) \cdot\left(1-\text { TINS }_{r, i}\right) \cdot Y_{r, i}, \quad \forall r \in R, i \in I N S D N G
$$

## Government transfer use

$$
\text { TRII_Use }_{r, \text { "gov" }}=\text { trnsfr_ } C R T_{r, \text { "gov" }} \cdot C P I_{r} \quad \forall r \in R
$$

## Transfer resource

TRII_Resource ${ }_{r, i}=$ shii_resource $_{r, i}$.

$$
\left(c r t_{-} i_{r} \cdot \overline{E X R_{r}}-\text { crt_out }_{r} \cdot \overline{E X R_{r}}+\sum_{i^{\prime}} \text { TRII_Use }_{r, i^{\prime}}\right), \quad \forall r \in R, i \in I N S D
$$

Imported commodity

$$
Q W M_{r, c}=Q M_{r, c}, \quad \forall r \in R, c \in C M
$$

Exported commodity

$$
Q W E_{r, c}=Q E_{r, c}, \quad \forall r \in R, c \in C E
$$

## World trade nominal balance

$$
\begin{aligned}
& \sum_{r \in R}\left(1-t w_{r, c}\right) \cdot P W M_{c} \cdot Q W M_{r, c} \cdot \operatorname{dis} s_{-} i m p_{r, c} \\
& \quad=\sum_{r \in R} P W E_{c} \cdot Q W E_{r, c} \cdot d i s_{-} \exp _{r, c}+P T R S_{c} \cdot Q T R S_{c}, \quad \forall c \in(C M \cap C E)
\end{aligned}
$$

## World trade volume balance

$$
\sum_{r \in R} Q W M_{r, c}=\left(1-\lambda_{c}^{w}\right) \cdot \sum_{r \in R}\left(Q W E_{r, c}-Q T R S_{c}\right), \quad \forall c \in(C M \cap C E)
$$

Transport service demand

$$
Q T R S_{c}=t s h_{c} \cdot \sum_{r} Q W E_{r, c}, \quad \forall c \in C_{-} T R S
$$

## CIF and FOB relationship

$$
P T R S_{c} \cdot Q T R S_{c}=\sum_{r^{\prime}} t w_{r^{\prime}, c} \cdot P W M_{c} \cdot Q W M_{r^{\prime}, c} \cdot d i s_{-} i m p_{r^{\prime}, c}, \quad \forall c \in C_{-} T R S
$$

## Biomass consumption (Household)

$$
T B H_{r, h}=\frac{E H_{r, h}}{C P I_{r}} \cdot \text { bioc }_{r, h} \cdot \text { biod }_{r, h} \quad \forall r \in R, h \in H
$$

Biomass consumption (Industry)

$$
T B I_{r, a}=Q A_{r, a} \cdot \text { bioc }_{r, a} \cdot \text { biod }_{r, a} \quad \forall r \in R, a \in A
$$

Emissions related to activity level (Industrial activity)

$$
\begin{aligned}
E M A L I_{r, a, g}= & Q A_{r, a} \cdot \operatorname{efacl}_{r, a, g} \cdot\left(1-N E R E D_{r, a, g}\right) \cdot\left(1+\chi_{r, a, g}\right) \\
& -\sum_{\text {eтст } \in E M C M}\left(Q R E D_{r, e m c m, a} / \eta_{\text {emcm }, a}\right), \quad \forall r \in R, a \in A, g \in G
\end{aligned}
$$

Additional emission reductions related to activity level (Industrial activity)

$$
\text { NERED }_{r, a, g}=1-\left(P G H G_{r}+1\right)^{-\sigma_{r, a, g}^{g h g}}, \quad \forall r \in R, a \in A, g \in G
$$

## Emissions related to activity level (household)

$$
E M A L H_{r, h, g}=\frac{E H_{r, h}}{C P I_{r}} \cdot \text { efacl }_{r, h, g} \quad \forall r \in R, h \in H, g \in G
$$

Emissions related to fossil fuel combustion (Industrial activity)

$$
E M F F I_{r, c, a, g}=\text { QINT }_{r, c, a} \cdot \text { enur }_{r, c, a} \cdot e f f f c_{r, c, a, g} \quad \forall r \in R, c \in E N E, a \in A, g \in G
$$

Emissions related to fossil fuel combustion (household)

$$
E M F F H_{r, c, h, g}=Q H_{r, c, h} \cdot e f f f c_{r, c, h, g} \quad \forall r \in R, c \in E N E, h \in H, g \in G
$$

Emissions related to biomass combustion (Industrial activity)

$$
E M B I I_{r, a, g}=T B I_{r, a} \cdot e f b i o_{r, a, g} \quad \forall r \in R, a \in A, g \in G
$$

Emissions related to biomass combustion (household activity)

$$
E M B I H_{r, h, g}=T B H_{r, h} \cdot e f b i o_{r, h, g} \quad \forall r \in R, h \in H, g \in G
$$

## GHG emission total in a region

GHG emission includes emission trading

$$
G H G T_{-} C T_{r}=G H G T_{r}-G H G T_{-} I M P_{r} \cdot \forall r \in R
$$

GHG emission importing trading upper limit

$$
\overline{\text { ghgt_imp_cap }}-G H G T_{-} I M P_{r} \geq 0 \perp P G H G_{-} I M P_{-} Q U O_{r} \geq 0 \quad \forall r \in R
$$

GHG emission exporting trading upper limit

$$
G H G T_{-} I M P_{r}-\overline{\text { ghgt_exp_cap }} \geq 0 \perp P G H G_{-} E X P_{-} Q U O_{r} \geq 0 \quad \forall r \in R
$$

GHG emission price nad international price

$$
P G H G_{r}=E X R_{r} \cdot\left(P G H G_{-} G+P G H G_{-} I M P_{-} Q U O_{r}-P G H G_{-} E X P \_Q U O_{r}\right) \quad \forall r \in R
$$

GHG emission constraint

$$
\overline{\text { ghgc }_{r}}-G H G T \_C T_{r} \geq 0 \perp P G H G_{r} \geq 0 \quad \forall r \in R
$$

## GHG emission cost of energy (Industry)

$$
G H G C A_{-} E N E_{r, c, a}=P G H G_{r} \cdot \sum_{g \in G} g w p_{g} \cdot E M F F I_{r, c, a, g} \quad \forall r \in R, a \in A
$$

## GHG emission cost of non-energy (Industry)

$$
G H G C A \_N E N E_{r, a}=P G H G_{r} \cdot \sum_{g \in G} g w p_{g} \cdot\left(E M B I I_{r, a, g}+E M A L I_{r, a, g}\right) \quad \forall r \in R, a \in A
$$

GHG emission cost of household

$$
G H G C H_{r, h}=P G H G_{r} \cdot \sum_{g \in G} g w p_{g} \cdot\left(\sum_{c \in C} E M F F H_{r, c, h, g}+E M A L H_{r, h, g}+E M B I H_{r, h, g}\right) \quad \forall r \in R, h \in H
$$

## GHG total cost

$$
\text { GHGTCOST }_{r}=\sum_{a \in A} G H G C A_{r, a}+\sum_{h \in H} G H G C H_{r, h} \quad \forall r \in R
$$

Global GHG emission constraint

Global GHG emission constraint price

$$
P G H G_{-} G=P G H G_{r}, \quad \forall r \in R
$$

Global GHG emission trading total

$$
\sum_{r \in R} G H G_{-} I M P_{r}=0
$$

GHG emission related to the international bankers

$$
\text { EMFFINT }=\sum_{r \in R} \sum_{c \in C} \lambda_{c} \cdot Q W E_{r, c} \cdot e f i t_{c}
$$

## Factor Markets

$$
\sum_{a \in A} Q F_{r, f, a}=\overline{Q F S}_{r, f}, \quad \forall r \in R, f \in F
$$

## Composite Commodity Markets

$$
\begin{aligned}
Q Q_{r, c}+ & \left(Q X 2_{r, c}+Q M_{r, c}\right) \cdot \text { loss }_{r, c}+s t c h 2_{r, c} \\
& =\sum_{a \in A} Q I N T_{r, c, a}+\sum_{h \in H} Q H_{r, c, h}+Q G_{r, c}+Q I N V_{r, c}, \quad \forall r \in R, c \in C
\end{aligned}
$$

Current-Account Balance for the Rest of the World, in Foreign Currency

$$
\begin{aligned}
& \sum_{c \in C M} P M_{r, c} \cdot Q M_{r, c}+\text { transfr_crt_out }_{r}+G H G_{-} \quad I M P_{r} \cdot P G H G_{r} \\
& =\sum_{c \in C E} P E_{r, c} \cdot Q E_{r, c}+\text { transfr_crt_in } r_{r}+\overline{F S A V_{r}} \quad \forall r \in R
\end{aligned}
$$

## Government Balance

$$
Y G_{r}=E G_{r}+G S A V_{r} \quad \forall r \in R
$$

## Direc Tax Rate

$$
\text { TINS }_{r, i}=\overline{\text { tins }_{r, i}} \cdot\left(1+\overline{\text { TINSADJ }_{r}} \cdot \operatorname{tins} 01_{r, i}\right)+\overline{\text { TIINS }_{r, i}} \cdot \operatorname{tins} 01_{r, i}, \quad \forall r \in R, i \in \operatorname{INSDNG}
$$

Institutional Savings Rates

$$
M P S_{r, i}=\overline{m p s_{r, i}} \cdot\left(1+\overline{M P S A D J}_{r} \cdot m p s 01_{r, i}\right)+D M P S_{r} \cdot m p s 01_{r, i}, \quad \forall r \in R, i \in I N S D N G
$$

## Savings-Investment Balance

$$
\begin{aligned}
& \sum_{i \in I N S D N G} M P S_{r, i} \cdot\left(1-T I N S_{r, i}\right) \cdot Y I_{r, i}+G S A V_{r}+\overline{F S A V_{r}} \cdot \overline{E X R_{r}} \\
&=\sum_{c \in C} P Q_{r, c} \cdot\left(1+t q_{r, c,{ }^{\prime I} I-S "}\right) \cdot Q I N V_{r, i} \quad \forall r \in R
\end{aligned}
$$

## Global Investment Balance

$$
\sum_{r \in R} F S A V_{r}=0
$$

Activity constraint (Upper boundary)

$$
\text { renew_up } p_{r, a}-Q A_{r, a} \geq 0 \quad \text { VRENCAP } P_{r, a} \geq 0, \quad \forall r \in R, a \in A=\left\{\text { renew_u }_{\sim} u p_{r, a}>0\right\}
$$

Activity constraint (QUOTA)

$$
\begin{aligned}
& \text { quotaqa }_{\text {ragg,aagg }}=\sum_{r \in M a p_{-} \text {Ragg }(r, r a g g) a \in \operatorname{Map} \_ \text {aagg }(a, a a g g)} \sum_{c \in C} Q A_{r, a} \cdot \theta_{r, a, c} \geq 0 \perp \text { RQUOQA_agg }{ }_{\text {ragg }, \text { aagg }} \geq 0, \\
& \forall r a g g \in \operatorname{Ragg}, \text { aagg } \in \text { Aagg }
\end{aligned}
$$

## Reduction measures (for non-energy related GHG emissions)

$$
\begin{aligned}
Q R E D_{r, e m c m, a}= & \xi_{e m c m, a}^{\max } \cdot \eta_{\text {emcm,a}} \cdot \sum_{g \in G} g w p_{g} \cdot E M A L I_{r, a, g} \cdot\left(\frac{P G H G_{r}}{\eta_{e m c m, a} \cdot\left(1+S U R G H G_{r, e m c m, a}\right)}\right)^{2}, \\
& \forall r \in R, a \in A, \text { emcm } \in E M C M 0
\end{aligned}
$$

Reduction measures upper boundary (for non-energy related GHG emissions)

$$
\xi_{e m c m, a}^{\max } \cdot \eta_{e m c m, a} \cdot \sum_{g \in G} g w p_{g} \cdot E M A L I_{r, a, g} \geq Q R E D_{r, e m c m, a} \perp S U R G H G_{r, e m c m, a} \geq 0, \forall r \in R, a \in A, \text { emcm } \in E M C M 0
$$

## Reduction measures (for Energy related GHG emissions)

$$
\begin{aligned}
Q R E D_{r, e m c m, a} & =\xi_{e m c m, a}^{\max } \cdot \eta_{e m c m, a} \cdot \sum_{c \in E N E} \sum_{g \in G} g w p_{g} \cdot E M F F I_{r, a, c, a} \cdot\left(\frac{P G H G_{r}}{\eta_{\text {emcm }, a} \cdot\left(1+S U R G H G_{r, e m c m, a}\right)}\right) \\
& \forall r \in R, a \in A, e m c m \in E M C M 1
\end{aligned}
$$

Reduction measures (for biomass power plant GHG absorption)

$$
\begin{aligned}
Q R E D_{r, \text { emcm }, a}= & \xi_{\text {emcm }, a}^{\max } \cdot \eta_{\text {emcm }, a} \cdot \sum_{g \in G} g w p_{g} \cdot E M B I I_{r, a, g} \cdot\left(\frac{P G H G_{r}}{\eta_{\text {emcm }, a} \cdot\left(1+S U R G H G_{r, e m c m, a}\right)}\right) \\
& \forall r \in R, a \in A, \text { emcm } \in E M C M 2
\end{aligned}
$$

Reduction measures upper boundary (for energy related GHG emissions)

$$
\begin{gathered}
\xi_{\text {maxcm }, a}^{\max } \cdot \eta_{e m c m, a} \cdot \sum_{c \in E N E} \sum_{g \in G} g w p_{g} \cdot E F F I I_{r, a, c, g} \geq \text { QRED }_{r, e m c m, a} \perp S U R G H G_{r, e m c m, a} \geq 0, \\
\forall r \in R, a \in A, \text { emcm } \in E M C M 1
\end{gathered}
$$

Reduction measures upper boundary (for biomass power plant GHG absorption)

$$
\xi_{e m e m, a}^{\max } \cdot \eta_{e m c m, a} \cdot \sum_{g \in G} g w p_{g} \cdot E M B I I_{r, a, g} \geq Q R E D_{r, e m c m, a} \perp S U R G H G_{r, e m c m, a} \geq 0, \forall r \in R, a \in A, \text { emcm } \in E M C M 2
$$

本ディスカッションペーパーシリーズは，独立行政法人国立環境研究所の研究者 および外部研究協力者によって行われた研究成果をとりまとめたものです。関係す る方々から幅広く意見やコメントを得るための場として公開しています。
論文は，すべて研究者個人の責任で執筆されており，独立行政法人国立環境研究所の見解を示すものではありません。


[^0]:    ${ }^{1}$ T. Masui, Y. Matsuoka, M. Kainuma, (2006) Long-term CO2 emission reduction scenarios in Japan, Environmental Economics and Policy Studies, Volume 7, Number 3, 347-366.
    ${ }^{2}$ Lofgren H., R. L. Harris and S. Robinson (2002); A Standard Computable General Equilibrium (CGE) model in GAMS, IFPRI.
    We acknowledge to the authors of the reports and International Food Policy Research Institute since many parts of the model development and documentation are based on their report and programming codes.

[^1]:    ${ }^{3}$ The production function excludes emission gases in this figure. Moreover, this production function is applied to only non energy transformation sectors

[^2]:    ${ }^{4}$ Hyman, R.C., J.M. Reilly, M.H. Babiker, A. De Masin, and H.D. Jacoby, (2003); Modeling non-CO2 greenhouse gas abatement. Environmental Modeling and Assessment, 8: 175-186.

[^3]:    ${ }^{5}$ This is the default version classification but if the long-term simulation like till 2100 is the objectives, household government and enterprises are treated as one aggregated representative household.

[^4]:    ${ }^{6}$ Energy commodity has specific treatment. It is discussed below

[^5]:    ${ }^{7}$ Coal (COA), crude oil (OIL), natural gas (GAS), petroleum products (P_C), town gas (GDT) and electricity (ELY)

[^6]:    ${ }^{8}$ The equations in the "International trade block" are involved only if you chose a global model.

[^7]:    ${ }^{9}$ Download from http://edgar.jrc.ec.europa.eu/index.php on 4th, Aug., 2010.
    ${ }^{10}$ Bond, T.C., E. Bhardwaj, R. Dong, R. Jogani, S. Jung, C. Roden, D.G. Streets, S. Fernandes, and N. Trautmann, (2007); Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850-2000. Global Biogeochemical Cycles 21: GB2018, doi:10.1029/2006GB002840.
    ${ }^{11}$ EEA (Europe Environmental Agency) (2009); EMEP/EEA air pollutant emission inventory guidebook 2009, No. 9 .
    ${ }^{12}$ IPCC, (2006); IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds). Published: IGES, Japan

[^8]:    ${ }^{13}$ The programs which are described in this chapter are from [../scenario/BaU.gms]
    14
    http://econ.worldbank.org/WBSITE/EXTERNAL/EXTDEC/EXTRESEARCH/0,,contentMDK:20699846~page PK:64214825~piPK:64214943~theSitePK:469382,00.html
    ${ }^{15}$ United Nations, (2008); World Population Prospects, The 2008 Revision Population Database

[^9]:    ${ }^{16}$ This list includes the declaration of sets, parameters and so on. The number of the sections shown in second column corresponds to that of in the actual program.

[^10]:    ${ }^{17}$ There are other parameters but ignore them in this case. They are just temporal parameters.

[^11]:    ${ }^{18}$ Primary supply of hydro and nuclear power has different definition from that of IEA's energy balance table. Transport includes industrial internal fuel use by transport equipment. The definition is the same as IEA's energy balance table. Non-energy use is included.

