• self-introduction
  • Theme
  • Literature
  • Presentation
  • NICAM−Chem
  • Project
  • Project (NIES)
  • Link

Basic Information

Affiliation Regional Atmospheric Modeling section
Position Chief Researcher
Email goto.daisuke at nies dot go dot jp
Degree Ph.D in Earth and Planetary Science
Specialty Meteorology, Atmospheric Chemistry, Atmospheric Environment
Society Meteorogical Society of Japan, American Geophysical Union, Japan Society for Atmospheric Environment, The Japan Society of Atmospheric Chemistry

Profile

I was born in Aichi, Japan. In 2004, I graduated in Faculty of Science, Kyoto University, Japan (Prof. Nobuaki Washida). In 2009, I graduated in Department of Earth and Planetary Science, The University of Tokyo, Japan (Prof. Terry Nakajima). After getting my Ph.D, I become a post doctoral researcher in Center for Climate System Research (CCSR; now Atmospheric and Ocean Research Institute), The University of Tokyo, Japan (Prof. Terry Nakajima). From 2012 to 2016, I was a researcher in Center for Regional Environmental Research, National Institute for Environmental Studies (NIES), Japan. From 2016 to 2023, I was a senior researcher in NIES. From 2023 to the present, I'm a chief researcher in NIES.

Researcher Information

Modeling of NICAM-Chem


We have developed and improved NICAM-Chem model (e.g., Goto et al., Geosci. Model Dev., 2015). The NICAM-Chem can simulate distributions of air pollutants. A stretching grid in NICAM can be available for regional simulations. Some of results are shown in NICAM-Chem page.

Model intercomparison for air pollutants


A model intercomparison with measurements can help us to deeply understand model performance. Some of results are published in Goto et al. (J. Geophys. Res. Atmos., 2015). 

NICAM-Chem

1) Goto D., Sato Y., Yashiro H., Suzuki K., Oikawa E., Kudo R., Nagao T.M., Nakajima T. (2020) Global aerosol simulations using NICAM.16 on a 14 km grid spacing for a climate study: improved and remaining issues relative to a lower-resolution model. Geoscientific Model Development, 13, 3731-3768, doi:10.5194/gmd-13-3731-2020.
This paper succeeded in simulating and evaluating global 14-km high resolution aerosols with NICAM-Chem for 3 years.

2) Goto D., Nakajima T., Dai T., Yashiro H., Sato Y., Suzuki K., Uchida J., Misawa S., Yonemoto R., Trieu T.T.N., Tomita H., Satoh M. (2018) Multi-scale Simulations of Atmospheric Pollutants Using a Non-hydrostatic Icosahedral Atmospheric Model. In: Vadrevu K., Ohara T., Justice C. (eds) Land-Atmospheric Research Applications in South and Southeast Asia. Springer Remote Sensing/Photogrammetry. Springer, Cham, doi:10.1007/978-3-319-67474-2_14.
This paper introduced an overall of use of NICAM-Chem with multiple scales and multiple applications.

3) Goto D., T. Dai, M. Satoh, H. Tomita, J. Uchida, S. Misawa, T. Inoue, H. Tsuruta, K. Ueda, C.F.S. Ng, A.Takami, N. Sugimoto, A. Shimizu, T. Ohara, and T. Nakajima (2015), Application of a global nonhydrostatic model with a stretched-grid system to regional aerosol simulations around Japan, Geoscientific Model Development, 8, 235-259, doi:10.5194/gmd-8-235-2015.
This paper developed NICAM-Chem using a stretching grid in Tokyo/Japan for the first time as a aerosol regional model in high-resolved grid spacing.

Referred papers (Updated on March 18, 2024)

  1. Cheng, Y., Dai T., Goto D., Chen L., Si Y., Murakami H., Yoshida M., Zhang P., Cao J., Nakajima T., Shi G. (2024) Improved hourly estimate of aerosol optical thickness over Asian land by fusing geostationary satellites Fengyun-4B and Himawari-9, Science of the Total Environment, 923, 171541, https://doi.org/10.1016/j.scitotenv.2024.171541.
  2. Goto D., Seiki T., Suzuki K., Yashiro H, Takemura T. (2024) Impacts of a double-moment bulk cloud microphysics scheme (NDW6-G23) on aerosol fields in NICAM.19 with a global 14-km grid resolution. Geoscientific Model Development, 17(2), 651-684, doi:10.5194/gmd-17-651-2024.
  3. Zhuang S., Fang S., Xu Y., Goto D., Dong X. (2024) Wet scavenging of multi-mode 137Cs aerosols following the Fukushima accident: size-resolved microphysics modeling with observed diameters, Science of the Total Environment, 917, 170287, https://doi.org/10.1016/j.scitotenv.2024.170287.
  4. Zhao, M., Dai T., Goto D., Wang H., Shi G. (2024) Assessing the assimilation of Himawari-8 observations on aerosol forecasts and radiative effects during pollution transport from South Asia to the Tibetan Plateau, Atmospheric Chemistry and Physics, 24(1), 235-258,doi:10.5194/acp-24-235-2024.
  5. Zhuang S., Fang S., Goto D., Dong X., Xu Y., Sheng L. (2023) Model behavior regarding in- and below-cloud 137Cs wet scavenging following the Fukushima accident using 1-km-resolution meteorological field data, Science of the Total Environment, 872, 162165, https://doi.org/10.1016/j.scitotenv.2023.162165.
  6. Cheng, Y., Dai T., Cao J., Chen L., Goto D., Yoshida M., Nakajima T., Shi G. (2022) Improvement of the Aerosol Forecast and Analysis Over East Asia With Joint Assimilation of Two Geostationary Satellite Observations, Geophysical Research Letter, 49(21), https://doi.org/10.1029/2022GL099908.
  7. Goto D., Uchida J. (2022) Uncertainty in Aerosol Rainout Processes Through the Case of the Radioactive Materials Emitted by the Fukushima Dai-ichi Nuclear Power Plant in March 2011. Journal of the Meteorological Society of Japan, 100(1), 197-217, doi:10.2151/jmsj.2022-010.
  8. Fang, S., Zhuang S., Goto D., Hu X., Sheng L., Huang S. (2022) Coupled modeling of in- and below-cloud wet deposition for atmospheric 137Cs transport following the Fukushima Daiichi accident using WRF-Chem: A self-consistent evaluation of 25 scheme combinations, Environment International, 158, 106882, https://doi.org/10.1016/j.envint.2021.106882.
  9. Cheng, Y., Dai T., Goto D., Murakami H., Yoshida M., Shi G., Nakajima T. (2021) Enhanced simulation of an Asian dust storm by assimilating GCOM-C observations, Remote Sensing, 13(15), 3020, https://doi.org/10.3390/rs13153020.
  10. Dai T., Cheng Y., Goto D., Li Y., Tang X., Shi G., Nakajima T. (2021) Revealing the sulfur dioxide emission reductions in China by assimilating surface observations in WRF-Chem, Atmospheric Chemistry and Physics, 21, 4357-4379, http://doi.org/10.5194/acp-2020-1259.
  11. Kodama C., Ohno T., Seiki T., Yashiro H., Noda A.T., Nakano M., Yamada Y., Roh W., Satoh M., Nitta T., Goto D., Miura H., Nasuno T., Miyakawa T., Chen Y.-W., Sugi M. (2021) The Nonhydrostatic ICosahedral Atmospheric Model for CMIP6 HighResMIP simulations (NICAM16-S): experimental design, model description, and impacts of model updates, Geoscientific Model Development, 14, 795-820, doi:10.5194/gmd-14-795-2021.
  12. Yamashita Y., Takigawa M., Goto D., Yashiro H., Satoh M., Kanaya Y., Taketani F., Miyakawa T. (2021) Effect of Model Resolution on Black Carbon Transport from Siberia to the Arctic Associated with the Well-Developed Low-Pressure Systems in September. Journal of the Meteorological Society of Japan, 99(2), 287-308, https://doi.org/10.2151/jmsj.2021-014.
  13. Wang H., Dai T., Goto D., Bao Q., He B., Liu Y., Takemura T., Nakajima T., Shi G. (2020) Simulating and Evaluating Global Aerosol Distributions With the Online Aerosol-Coupled CAS-FGOALS Model, Journal of Geophysical Research: Atmosphere. 125, e2019JD032097, https://doi.org/10.1029/2019JD032097.
  14. Wang H., Dai T., Zhao M., Goto D., Bao Q., Takemura T., Nakajima T., Shi G. (2020) Aerosol Effective Radiative Forcing in the Online Aerosol Coupled CAS-FGOALS-f3-L Climate Model. Atmosphere. 11(10), 1115, https://doi.org/10.3390/atmos11101115 .
  15. Goto D., Sato Y., Yashiro H., Suzuki K., Oikawa E., Kudo R., Nagao T.M., Nakajima T. (2020) Global aerosol simulations using NICAM.16 on a 14 km grid spacing for a climate study: improved and remaining issues relative to a lower-resolution model. Geoscientific Model Development, 13, 3731-3768, doi:10.5194/gmd-13-3731-2020.
  16. Nakajima T., Ohara T., Masui T., Takemura T., Yoshimura K., Goto D., Hanaoka T., Itahashi S., Kurata G., Kurokawa J., Maki T., Masutomi Y., Nakata M., Nitta T., Seposo X., Sudo K., Suzuki C., Suzuki K., Tsuruta H., Ueda K., Watanabe S., Yu Y., Yumimoto K., Zhao S. (2020) A Development of Reduction Scenarios of the Short-Lived Climate Pollutants (SLCPs) for Mitigating Global Warming and Environmental Problems, Progress in Earth and Planetary Science, 7, 33, https://doi.org/10.1186/s40645-020-00351-1.
  17. Sato Y., Sekiyama T.T., Fang S., Kajino M., Quérel A., Quélo D., Kondo H., Terada H., Kadowaki M., Takigawa M., Morino Y., Uchida J., Goto D., Yamazawa H. (2020) A model intercomparison of atmospheric 137Cs concentrations from the Fukushima Daiichi Nuclear Power Plant accident, Phase III: Simulation with an identical source term and meteorological field at 1-km resolution, Atmospheric Environment, X7, 100086, https://doi.org/10.1016/j.aeaoa.2020.100086.
  18. Hotta H., Suzuki K., Goto D., Lebsock M. (2020) Climate impact of cloud water inhomogeneity through microphysical processes in a global climate model, Journal of Climate, 33(12), 5195-5212, https://doi.org/10.1175/JCLI-D-19-0772.1.
  19. Goto D., Morino Y., Ohara T., Sekiyama T.T., Uchida J., Nakajima T. (2020) Application of linear minimum variance estimation to the multi-model ensemble of atmospheric radioactive Cs-137 with observations. Atmospheric Chemistry and Physics, 20, 3589-3607, doi:10.5194/acp-20-3589-2020.
  20. Takagi M., Ohara T., Goto D., Morino Y., Uchida J., Sekiyama T.T., Nakayama S., Ebihara M., Oura Y., Nakajima T., Tsuruta H., Moriguchi Y. (2020) Reassessment of early 131I inhalation doses by the Fukushima nuclear accident based on atmospheric 137Cs and 131I/137Cs observation data and multi-ensemble of atmospheric transport and deposition model. Journal of Environmental Radioactivity, 218, 106233, https://doi.org/10.1016/j.jenvrad.2020.106233.
  21. Cheng Y., Dai T., Goto D., Schutgens N.A.J., Shi G., Nakajima T. (2019) Investigating the assimilation of CALIPSO global aerosol vertical observations using Four-Dimensional Ensemble Kalman Filter. Atmospheric Chemistry and Physics, 19, 13445-13467, doi:10.5194/acp-19-13445-2019.
  22. Dai T., Cheng Y., Goto D., Schutgens N.A.J., Kikuchi M., Yoshida M., Shi G., Nakajima T. (2019) Inverting the East Asian Dust Emission Fluxes Using the Ensemble Kalman Smoother and Himawari-8 AODs: A Case Study with WRF-Chem v3.5.1. Atmosphere, 10, 543, doi:10.3390/atmos10090543.
  23. Dai T., Cheng Y., Suzuki K., Goto D., Kikuchi M., Schutgens N.A.J., Yoshida M., Zhang P., Husi L., Shi G., Nakajima T. (2019) Hourly aerosol assimilation of Himawari-8 AOT using the four-dimensional local ensemble transform Kalman filter. Journal of Advances in Modeling Earth Systems, 11(3), 680-711, doi:10.1029/2018MS001475.
  24. Goto D., Kikuchi M., Suzuki K., Hayasaki M., Yoshida M., Nagao T.M., Choi M., Kim J., Sugimoto N., Shimizu A., Oikawa E., Nakajima T. (2019) Aerosol model evaluation using two geostationary satellites over East Asia in May 2016. Atmospheric Research, 217, 93-113, doi:10.1016/j.atmosres.2018.10.016.
  25. Sato Y., Takigawa M., Sekiyama T.T., Kajino M., Terada H., Nagai H., Kondo H., Uchida J., Goto D., Quelo D., Mathieu A., Querel A., Fang S., Morino Y., von Schoenberg P., Grahn H., Brannstrom N., Hirao S., Tsuruta H., Yamazawa H., Nakajima T. (2018) Model intercomparison of atmospheric 137Cs from the Fukushima Daiichi Nuclear Power Plant Accident: Simulations based on identical input data. Journal of Geophysical Research Atmosphere, 123, doi:10.1029/2018JD029144.
  26. Dai T., Cheng Y., Zhang P., Shi G., Sekiguchi M., Suzuki K., Goto D., Nakajima T. (2018) Impacts of meteorological nudging on the global dust cycle simulated by NICAM coupled with an aerosol model. Atmospheric Environment, 190, 99-115, doi:10.1016/j.atmosenv.2018.07.016.
  27. Sato Y., Goto D., Michibata T., Suzuki K., Takemura T., Tomita H., Nakajima T. (2018) Aerosol effects on cloud water amounts were successfully simulated by a global cloud-system resolving model, Nature Communications, 9: 985, DOI: 10.1038/s41467-018-03379-6.
  28. Jing X.W., Suzuki K., Guo H., Goto D., Ogura T., Koshiro T., Mumlmenstadt J. (2017) A multi-model study on warm precipitation biases in global models compared to satellite observations, Journal of Geophysical Research: Atmospheres, 122. doi:10.1002/2017JD027310.
  29. Uchida J., Mori M., Hara M., Satoh M., Goto D., Kataoka T., Suzuki K., Nakajima T. (2017) Impact of lateral boundary errors on the simulation of clouds with a non-hydrostatic regional climate model, Monthly Weather Review, 145, 12, 5059-5082, doi:10.1175/MWR-D-17-0158.1.
  30. Schutgen N., Tsyro S., Gryspeerdt E., Goto D., Weigum N., Schulz M., Stier P. (2017) On the spatio-temporal representativeness of observations, Atmos. Chem. Phys., 17, 9761-9780, doi:10.5194/acp-17-9761-2017.
  31. Sarkar T., Anand S., Singh K.D., Tripathi R.M., Sarojini P.K., Goto D., Nakajima T. (2017) Simulating Long Range Transport of Radioactive Aerosols Using a Global Aerosol Transport Model, Aerosol and Air Quality Research, 17, 2631-2642, DOI:10.4209/aaqr.2017.01.0049.
  32. Kaskaoutis D.G., Rashki A., Houssos E.E., Legrand M., Francois P., Bartzokas A., Kambezidis H.D., Dumca U.C., Goto D., Takemura T. (2017) Assessment of changes in atmospheric dynamics and dust activity over southwest Asia using the Caspian Sea -Hindu Kush Index. International Journal of Climatology, 37(S1), 1013-1034, https://doi.org/10.1002/joc.5053.
  33. Trieu T. T. N., Goto D., Yashiro H., Murata R., Sudo K., Tomita H., Satoh M., Nakajima T. (2017) Evaluation of summertime surface ozone in Kanto area of Japan using a semi-regional model and observation, Atmospheric Environment, 153, 163-181, doi:10.1016/j.atmosenv.2017.01.030.
  34. Nakajima T., Misawa S., Morino Y., Tsuruta H., Goto D., Uchida J., Takemura T., Ohara T., Oura Y., Ebihara M., Satoh M. (2017) Model depiction of the atmospheric flows of radioactive cesium emitted from the Fukushima Daiichi Nuclear Power Station accident, Progress in Earth and Planetary Science, 4:2, doi:10.1186/s40645-017-0117-x.
  35. Goto D., Ueda K., Ng C.F.S., Takami A., Ariga T., Matsuhashi K., Nakajima T. (2016) Estimation of excess mortality due to long-term exposure to PM2.5 in Japan using a high-resolution model for present and future scenarios, Atmospheric Environment, 140, 320-332, doi:10.1016/j.atmosenv.2016.06.015.
  36. Sato Y., Miura H., Yashiro H., Goto D., Takemura T., Tomita H., Nakajima T. (2016) Unrealistically pristine air in the Arctic produced by current global scale models, Scientific Reports, 6, 26561, https://doi.org/10.1038/srep26561.
  37. Sato Y., Higuchi A., Takami A., Murakami A., Masutomi Y., Tsuchiya K., Goto D., Nakajima T. (2016) Regional variability in the impacts of future land use on summertime temperatures in Kanto region, the Japanese megacity. Urban Forestry and Urban Greening, 20, 43-55, doi:10.1016/j.ufug.2016.07.012.
  38. Schutgens N.A.J., Gryspeerdt E., Weigum N., Tsyro S., Goto D., Schulz M., Stier P. (2016) Will a perfect model agree with perfect observations? The impact of spatial sampling, Atmospheric Chemistry and Physics,16, 6335-6353, doi:10.5194/acp-16-6335-2016.
  39. Yin X., Dai T., Schutgens N.A.J., Goto D., Nakajima T., Shi G. (2016) Effects of data assimilation on the global aerosol key optical properties simulations, Atmospheric Research, 178-179, 175-186, https://doi.org/10.1016/j.atmosres.2016.03.016.
  40. Kaskaoutis D.G., Houssos E.E., Rashki A., Francois P., Legrand M., Goto D., Bartozokas A., Kambezidis H.D., Takemura T. (2016) The Caspian Sea-Hindu Kush Index (CasHKI): A regulatory factor for dust activity over southwest Asia, Global and Planetary Change, 137, 10-23, doi:10.1016/j.gloplacha.2015.12.011.
  41. Ueda K., Tasmin S., Takami A, Goto D., Oishi M., Phung V.L.H., Yasukochi S., Chowdhury P.H. (2016) Effects of Long-term Exposure to Fine Particulate Matter on Mortality: Systematic Review and Meta-analysis on Assessment of Exposure and Health Effects in Epidemiological Studies. J. Jpn. Soc. Atmos. Environ., 51(6), 245-256 (in Japanese)
  42. Goto D., Nakajima T., Dai T., Takemura T., Kajino M., Matsui H., Takami A., Hatakeyama S., Sugimoto N., Shimizu A., Ohara T. (2015) An evaluation of simulated sulfate over East Asia through global model inter-comparison, Journal of Geophysical Research Atmosphere, 120 (12), 6247-6270, doi:10.1002/2014JD021693.
  43. Goto D., Dai T., Satoh M., Tomita H., Uchida J., Misawa S., Inoue T., Tsuruta H., Ueda K., Ng C.F.S., Takami A., Sugimoto N., Shimizu A., Ohara T., Nakajima T. (2015) Application of a global nonhydrostatic model with a stretched-grid system to regional aerosol simulations around Japan. Geoscientific Model Development, 8, 235-259, doi:10.5194/gmd-8-235-2015.
  44. Satoh M., Tomita H., Yashiro H., Miura H., Kodama C., Seiki T., Noda A.T., Yamada Y., Goto D., Sawada M., Miyoshi T., Niwa, Y., Hara M., Ohno T., Iga S., Arakawa T., Inoue T., Kubokawa H.(2014) The Non-hydrostatic Icosahedral Atmospheric Model: Description and Development. Progress in Earth and Planetary Science, 1,18, https://doi.org/10.1186/s40645-014-0018-1.
  45. Goto D.(2014) Modeling of black carbon in Asia using a global-to-regional seamless aerosol-transport model. Environmental Pollution, 195, 330-335, https://doi.org/10.1016/j.envpol.2014.06.006.
  46. Dai T., Schutgens N.A.J., Goto D., Shi G.-Y., Nakajima T. (2014) Improvement of aerosol optical properties modeling over Eastern Asia with MODIS AOD assimilation in a global non-hydrostatic icosahedral aerosol transport model. Environmental Pollution, 195, 319-329, https://doi.org/10.1016/j.envpol.2014.06.021.
  47. Kaskaoutis D.G., Rashki A., Houssos E.E., Goto D., Nastos P. T. (2014) Extremely high aerosol loading over Arabian Sea during June 2008: The specific role of the atmospheric dynamics and Sistan dust storms. Atmospheric Environment, 94, 374-384, http://dx.doi.org/10.1016/j.atmosenv.2014.05.012.
  48. Kaskaoutis D.G., Rashki A., Houssos E.E., Mofidi A., Goto D., Bartzokas A., Francois P., Legrand M. (2014) Meteorological aspects associated with dust storms in the Sistan region, southeastern Iran. Climate Dynamic, 45, 407-424, https://doi.org/10.1007/s00382-014-2208-3.
  49. Kaskaoutis D.G., Houssos E.E., Goto D., Bartzokas A., Nastos P.T., Sinha P.R., Kharol S.K., Kosmopoulos P.G., Singh R.P., Takemura T. (2014) Synoptic weather conditions and aerosol episodes over Indo-Gangetic Plains, India. Climate Dynamic, 43, 2313-2331, https://doi.org/10.1007/s00382-014-2055-2.
  50. Dai T., Goto D., Schutgens N.A.J., Dong X., Shi G., Nakajima T. (2014) Simulated aerosol key optical properties over global scale using an aerosol transport model coupled with a new type of dynamic core. Atmospheric Environment, 82, 71-82, https://doi.org/10.1016/j.atmosenv.2013.10.018.
  51. Goto D., Oshima N., Nakajima T., Takemura T., Ohara T. (2012) Impact of the aging process of black carbon aerosols on their spatial distribution, hygroscopicity, and radiative forcing in a global climate model. Atmospheric Chemistry and Physics Discussion, 12, 29801-29849, https://doi.org/10.5194/acpd-12-29801-2012.
  52. Kaskaoutis D.G., Gautam R., Singh R.P., Houssos E.E., Goto D., Singh S.N., Bartzokas A., Kosmopoulos P.G., Sharma M., Hsu N.C., Holben B.N., Takemura T. (2012) Influence of anomalous dry conditions on aerosols over India: Transport, distribution and properties. Journal of Geophysical Research, 117, D09106, https://doi.org/10.1029/2011JD017314.
  53. Goto D., Kanazawa S., Nakajima T., Takemura T. (2012) Evaluation of a relationship between aerosols and surface downward shortwave flux through an integrative analysis of modeling and observation. Atmospheric Environment, 49, 294-301, doi:10.1016/j.atmosenv.2011.11.032.
  54. Goto D., Nakajima T., Takemura T., Sudo K. (2011) A study of uncertainties in the sulfate distribution and its radiative forcing associated with sulfur chemistry in a global aerosol model. Atmospheric Chemistry and Physics, 11, 10889-10910, doi:10.5194/acp-11-10889-2011.
  55. Goto D., Schutgens N.A.J., Nakajima T., Takemura T. (2011) Sensitivity of aerosol to assumed optical properties over Asia using a global aerosol model and AERONET. Geophysical Research Letter, 38, L17810, doi:10.1029/2011GL048675
  56. Goto D., Badarinath K.V.S., Takemura T., Nakajima T. (2011) Simulation of aerosol optical properties over tropical urban site in India using a global model and its comparison with ground measurements. Annales Geophysicae, 29, 955-963, doi:10.5194/angeo-29-955-2011.
  57. Goto D., Takemura T., Nakajima T., Badarinath K.V.S. (2011) Global aerosol model-derived black carbon concentration and single scattering albedo over Indian region and its comparison with ground observations. Atmospheric Environment, 45(19), 3277-3285, https://doi.org/10.1016/j.atmosenv.2011.03.037.
  58. Badarinath K.V.S., Goto D., Kharol S.K., Mahalakshmi D.V., Sharma A.R., Nakajima T., Hashimoto M., Takemura T. (2011) Influence of natural and anthropogenic emissions on aerosol optical properties over tropical urban site - a study using sky radiometer and satellite data. Atmospheric Research, 100(1), 111-120, https://doi.org/10.1016/j.atmosres.2011.01.003.
  59. Goto D., Takemura T., Nakajima T. (2008) Importance of global aerosol modeling including secondary organic aerosol formed from monoterpene. Journal of Geophysical Research, 113, D07205, https://doi.org/10.1029/2007JD009019.
  60. Nakajima T., Yoon S.-C., Ramanathan V., Shi G.-Y., Takemura T., Higurashi A., Takamura T., Aoki K., Sohn B.-J., Kim S.-W., Tsuruta H., Sugimoto N., Shimizu A., Tanimoto H., Sawa Y., Lin N.-H., Lee C.-T., Goto D., Schutgens N. (2007) Overview of the Atmospheric Brown Cloud East Asian Regional Experiment 2005 and a study of the aerosol direct radiative forcing in east Asia. Journal of Geophysical Research, 112, D24S91, https://doi.org/10.1029/2007JD009009.

Referred proceedings and articles (December 19, 2023)

  1. Nakajima T., Takemura T, Suzuki K., Goto D. (2023) Impacts of air pollutants on climate change: Importance of SLCF co-control for climate change mitigation in short- and long-term future. In: Akimoto H., Hanimoto H. (eds.) Handbook of air quality and climate change, Springer, Singapore, https://doi.org/10.1007/978-981-15-2527-8_40-1
  2. Goto D., Nakajima T., Dai T., Yashiro H., Sato Y., Suzuki K., Uchida J., Misawa S., Yonemoto R., Trieu T.T.N., Tomita H., Satoh M. (2018) Multi-scale Simulations of Atmospheric Pollutants Using a Non-hydrostatic Icosahedral Atmospheric Model. In: Vadrevu K., Ohara T., Justice C. (eds) Land-Atmospheric Research Applications in South and Southeast Asia. Springer Remote Sensing/Photogrammetry. Springer, Cham
  3. Goto D., Sato Y., Yashiro H., Suzuki K., Nakajima T. (2017) Validation of high-resolution aerosol optical thickness simulated by a global non-hydrostatic model against remote sensing measurements. AIP Conference Proceedings, 1810, 100002, doi:10.1063/1.4975557
  4. Goto D., Schutgens N.A.J., Oikawa E., Takemura T., Nakajima T. (2017) Improvement of a global aerosol transport model through validation and implementation of a data assimilation system. CGER's SUPERCOMPUTER MONOGRAPH REPORT, Vol.23, pp. 117
  5. Nakajima T., Imasu R., Takami A., Goto D., Tsuruta H., Uchida J., Dai T., Misawa S., Ueda K., Ng C.F.S., Watanabe C., Konishi S., Sato Y., Higuchi A., Masutomi Y., Murakami A., Tsuchiya K., Kondo H., Niwa Y., Yoshimura K., Ohara T., Morino Y., Schutgens N., Sudo K., Takemura T., Inoue T., Arai Y., Murata R., Yonemoto R., Trieu T.T.N., Uematsu M., Satoh M., Tomita H., Yashiro H., Hara M. (2015) Development of Seamless Chemical Assimilation System and Its Application for Atmospheric Environmental Materials. Simulation, 34(2), 104-114, (In Japanese)
  6. Nakajima T., Takenaka H., Goto D., Misawa S., Uchida J., Nakajima T. Y. (2013) Measurements and modeling of the solar radiation budget. Simulation, 32, 199-207
  7. Goto D., Kanazawa S., Nakajima T., Takemura T. (2013) Evaluation of a relationship between aerosols and surface downward shortwave flux through an integrative analysis of a global aerosol-transport model and in-situ measurements. AIP Conf. Proc. 1531, 680, doi:10.1063/1.4804861
  8. 岩崎俊樹, 宮崎和幸, 関山剛, 五藤大輔, 中島映至, 弓本桂也, 鵜野伊津志, 塩谷雅人 (2013) 2012年度秋季大会スペシャル・セッション「大気微量気体およびエアロゾルの同化とその気候研究への利用」報告. 天気, 60 (3), 203-207(in Japanese)
  9. Goto D., Oshima N., Nakajima T., Takemura T. (2012) Treatment of black carbon by a global climate model and the potential contribution of electron microscopy. Technical reports of the meteorological research institute, 68, 24-27
  10. Goto D. (2010) Review of up-to-date global aerosol models with higher-performance computers. Earozol Kenkyu, 25(4), 331-335 (In Japanese)

Non-referred articles (February 26, 2020)

  1. Tsuruta H., Oura Y., Ebihara M., Goto D. (2019) Atmospheric Radionuclides Concentrations Just After the Fukushima Accident. In: Nakajima T., Ohara T., Uematsu M., Onda Y. (eds) Environmental Contamination from the Fukushima Nuclear Disaster. Cambridge University Press

Only first author (only international conference/symposium/workshop) updated on March 18, 2024

  1. Goto D, Dai, T., Cheng, Y., Sugata. S. (2023) Research on air pollution prediction by assimilating aerosol products retrieved from satellites, JAXA PI workshop, Tokyo, November 2023
  2. Goto D., Seiki T., Suzuki K., Yashiro H., Takemura T. (2023) Improvement of global 14 km aerosol simulation with update of cloud microphysics module, 2023 International Conference on CMAS-Asia-Pacific, Saitama, Japan, July 2023
  3. Goto D. (2022) Research on air pollution prediction by assimilating aerosol products retrieved from satellites, JAXA PI workshop, Tokyo (hybrid), November 2022
  4. Goto D., Uchida, J. (2021) Sensitivity tests for aerosol rainout processes in NICAM, International workshop on model intercomparison project for better understandings of present status of meso-scale atmospheric transport models, Japan (online), March 2021
  5. Goto D., Morino, Y., Ohara, T., Sekiyama, T. T., Uchida, J., Nakajima, T. (2020) Multi-model ensemble simulation constrained by measurement datasets of atmospheric radioactive cesium released from the Fukushima accident, SNA+MC2020, Japan (only proceeding), May 2020
  6. Goto D., Morino, Y., Ohara, T., Sekiyama, T. T., Uchida, J., Nakajima, T., (2019) Development of multi-model ensemble method for radionuclides released from Fukushima nuclear accident, 2019 American Geophysical Union (AGU) Fall Meeting, San Francisco, USA, December 2019
  7. Goto D., (2019) Global aerosol simulations with a cloud-system resolving model, 8th International EarthCARE science workshop, Fukuoka, Japan, November 2019
  8. Goto D., Sugata S., Dai T., Cheng Y., Nakajima T. (2019) Application of a multi-model ensemble method for PM2.5 estimation, 16th Annual Meeting: Asia Oceania Geosciences Society (AOGS), Singapore, Singapore, August 2019
  9. Goto D., (2019) Global aerosol simulation with 14 km grid spacing, 5th International SKYNET workshop 2019, New Delhi, India, February 2019
  10. Goto D., (2018) Global aerosol budget and its radiative forcing using a non-hydrostatic global atmospheric transport model with 14 km grid spacing, 2018 American Geophysical Union (AGU) Fall Meeting, Washington D.C., USA, December 2018
  11. Goto D., Sato Y., Yashiro H., Suzuki K., Nakajima T. (2018) Global aerosol climatology with 14 km grid spacing using a non-hydrostatic atmospheric transport model, 2018 International Global Atmospheric Chemistry (IGAC) Science Conference, Takamatsu, Japan, September 2018
  12. Goto D., Kikuchi M., Suzuki K., Hayasaki M., Yoshida M., Nagao T., Sugimoto N., Shimizu A., Nakajima T. (2018) Understanding of Atmospheric Aerosol Behavior Using a Semi-Regional Model, a Geostationary Satellite and in Situ Measurements over Japan in May 2016, 15th Annual Meeting: Asia Oceania Geosciences Society (AOGS), Honolulu, Hawaii, USA, June 2018
  13. Goto D. (2018) Analysis of aerosol transport to Japan by combining seamless regional model and multiple observations including geostationary satellite: A case study of May 2016, Land Cover/Land Use Changes (LC/LUC) and Impacts on Environment in South/Southeast Asia -International Regional Science Meeting, Manila, Philippine, May 2018
  14. Goto D. (2018) Understanding the transboundary air pollution to Japan using a semi-regional model, geostationary satellites and in situ measurements: A case study of May 2016, Workshop at Lanzhou University, Lanzhou, China, April 2018
  15. Goto D. (2018) Significance of transboundary air pollution to Japan during May 2016 - a study using a semi-regional model, a geostationary satellite and in situ measurements, Seminar at State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), Beijing, China, January 2018
  16. Goto D., Kikuchi M., Suzuki K., Hayasaki M., Yoshida M., Nagao T., Sugimoto N., Shimizu A., Nakajima T. (2017) Model evaluation using a geo-stationary satellite and in-situ measurements around Japan in May 2016, 2017 American Geophysical Union (AGU) Fall Meeting, New Orleans, USA, December 2017
  17. Goto D., Sato Y., Yashiro H., Suzuki K., Nakajima T. (2017) Aerosol climatology with 14 km grid spacing using a non-hydrostatic global atmospheric transport model, 16th AeroCom workshop, Helsinki, Finland, October 2017
  18. Goto D., Ueda K., Ng C.F.S., Takami A., Ariga T., Matsuhashi K., Nakajima T. (2016) Influence of model grid size on the simulation of PM2.5 and the related excess mortality in Japan, 2016 American Geophysical Union (AGU) Fall Meeting, San Francisco, USA, December 2016
  19. Goto D. (2016) Development of a global atmospheric aerosol model with O(10km) grid spacing, International Meeting on Land Use and Emissions in South/Southeast Asia, Ho Chi Minh City, Vietnam, October 2016
  20. Goto D. (2016) Global-to-regional simulations of aerosols with O(10km) grid spacing and its application studies, Seminar at State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), Beijing, China, September 2016
  21. Goto D., Nakajima T. (2016) High resolved aerosol simulations using a non-hydrostatic icosahedral atmospheric model (NICAM), 15th AeroCom workshop, Beijing, China, September 2016
  22. Goto D., Sato Y., Yashiro H., Suzuki K., Nakajima T. (2016) Validation of high-resolution aerosol optical thickness by a global non-hydrostatic model using remote sensing measurements, International Radiation Symposium 2016, Auckland, New Zealand, April 2016
  23. Goto D. (2016) Seamless global-to-regional simulation of aerosols with O(10km) grid spacing, 2nd International Workshop on SLCPs in Asia: Chemistry-climate modeling and its applications, Incheon, South Korea, February 2016 (invited)
  24. Goto D., Sato Y., Yashiro H., Suzuki T., Nakajima T. (2015) Simulation and validation of global aerosol distributions using a nonhydrostatic icosahedral atmospheric model with 14 km grid spacing, 2015 American Geophysical Union (AGU) Fall Meeting, San Francisco, USA, December 2015
  25. Goto D. (2015) Regional simulation of aerosols using NICAM-Chem with a stretched-grid system, The 13th International Conference on Atmospheric Sciences and Applications to Air Quality (ASAAQ13), Kobe, Japan, November 2015
  26. Goto D., Sato Y., Yashiro H., Suzuki K., Nakajima T. (2015) A model evaluation of global high-resolving simulated aerosol distributions, Asian Conference on Meteorology, Kyoto, Japan, October 2015
  27. Goto D. (2015) Assessment of sulfate aerosols and its uncertainty due to clouds using global models, International Workshop on Land Use/Cover Changes and Air Pollution in Asia, Bogor, Indonesia, August 2015
  28. Goto D., Nakajima T., Dai T., Takemura T., Kajino M., Matsui H., Takami A., Hatakeyama S., Sugimoto N., Shimizu A., Ohara T. (2015) Uncertainty of sulfate aerosols against differences between host climate models, 26th IUGG 2015, Prague, Czech Republic, June 2015
  29. Goto D., Nakajima T., Satoh M., MEXT/RECCA/SALSA Project Team (2015) Development of an atmospheric aerosol-chemistry model (NICAM-Chem) and its application to regional simulations over East Asia, The 6th MICS-Asia workshop, Zhuhai, China, February 2015
  30. Goto D., Nakajima T., Satoh M., MEXT/RECCA/SALSA Project Team (2014) Development of aerosol-chemistry transport model coupled to non-hydrostatic icosahedral atmospheric model (NICAM) through applying a stretched grid system to regional simulations around Japan.2014 American Geophysical Union (AGU) Fall Meeting, San Francisco, USA, December 2014
  31. Goto D., Nakajima T., Murata R., Yashiro H., Sudo K., Dai T., Misawa S., Uchida J., Ohara T., MEXT/RECCA/SALSA Project Team (2014) Development of simulating aerosols and tropospheric ozone in megacities using a global nonhydrostatic model with a stretched-grid system. 2014 International Global Atmospheric Chemistry (IGAC) Science Conference, Natal, Brazil, September 2014
  32. Goto D., Nakajima T., Dai T., Yashiro H., Sudo K., Murata R., Misawa S., Uchida J., Inoue T., Tsuruta H., Satoh M., Tomita H., Ohara T., MEXT/RECCA/SALSA Project Team (2014) Simulation of atmospheric aerosols and ozone around Tokyo using a global nonhydrostatic model with a stretched-grid system. Asia Oceania Geosciences Society (AOGS) 11th Annual Meeting 2014, Sapporo, Japan, August 2014
  33. Goto D., Nakajima T., Dai T., Yashiro H., Murata R., Sudo K., Misawa S., Uchida J., MEXT/RECCA/SALSA Project Team (2014) Simulation of SLCP in Japan using a new atmospheric aerosol-chemistry model (NICAM-Chem) with a stretched-grid system. 2nd ABC-SLCP Symposium, Tokyo, Japan, July 2014
  34. Goto D., Oikawa E., Suzuki K., Seiki T., Nakajima T. (2014) Estimating global aerosol optical properties and their radiative forcings by a global model with 14km grid spacing. 14th Conference on Cloud Physics by American Meteorological Society (AMS), Boston, USA, July 2014
  35. Goto D. (2014) Simulation of atmospheric air pollutants over Japan and its application to health impacts under MEXT/RECCA/SALSA project in Japan. International Workshop on Air Quality in Asia, Hanoi, Vietnam, June 2014
  36. Goto D., Ohara T., Nakajima T., Dai T., Takemura T., Kajino M., Matsui H., Takami A., Hatakeyama S., Aoki K., Sugimoto N., Shimizu A. (2013) Model intra-comparison of transboundary sulfate loadings over springtime east Asia. 2013 American Geophysical Union (AGU) Fall Meeting, San Francisco, USA, December 2013
  37. Goto D., SALSA Project Team (2013) Simulation and application of anthropogenic aerosols in Japan using a non-hydrostatic icosahedral atmospheric model. ABC-SLCP Symposium
  38. Goto D., Suzuki K. SALSA Project Team (2013) A study of combustion aerosols in Japan using a Nonhydrostatic icosahedral atmospheric model (NICAM). Goldschmidt2013, Florence, Italy, August 2013
  39. Goto D. (2013) Simulation of aerosol spatial distribution over Asia using a global aerosol model. International Workshop on Inventory, Modeling and Climate Impacts of Greenhouse Gas emissions (GHG's) and Aerosols in the Asian Region, Tsukuba, Japan, June 2013
  40. Goto D., Suzuki K., Inoue T., Nakajima T. SALSA Project Team (2013) Evaluation of simulated meteorological and aerosol fields around Tokyo during August 2007 using a new-type seamless model from global-to-regional scales. European Geosciences Union General Assembly 2013, Wien, Austria, April 2013
  41. Goto D., Dai T., Suzuki K., Nakajima T. SALSA Project Team (2012) Simulation of atmospheric aerosols around Tokyo in summer using a new-type seamless model from global to regional scales. 2012 American Geophysical Union (AGU) Fall Meeting, San Francisco, USA, December 2012
  42. Goto D., Kanazawa S., Nakajima T., Takemura T. (2012) Evaluation of a relationship between aerosols and surface downward shortwave flux through an integrative analysis of modeling and observation. International Radiation Symposium 2012, Berlin, Germany, August 2012
  43. Goto D., Oshima N., Nakajima T., Takemura T. (2012) Treatment of black carbon and availability of electron microscope for global climate models. International symposium on aerosol studies explored by electron microscopy, Tsukuba, Japan, February 2012
  44. Goto D., Yashiro H., Sudo K., Suzuki K., Seiki T., Nakajima T., Satoh M., Tomita H., Takemura T. (2011) Development of NICAM-Chem (CHASER and SPRINTARS). Second International SALSA Workshop 2011, Kashiwa, Japan, December 2011
  45. Goto D., Suzuki K., Seiki T., Nakajima T., Takemura T. (2011) Impact of heterogeneity in aerosol distributions within one GCM-resolved grid on the area-averaged value. 2011 American Geophysical Union (AGU) Fall Meeting, San Francisco, USA, December 2011
  46. Goto D., Oshima N., Nakajima T., Takemura T. (2011) Impact of aging process for black carbon aerosol on its distribution and radiative forcing. 10th AeroCom Workshop, Fukuoka, Japan, October 2011
  47. Goto D. (2011) Model comparison over Asia: preliminary results under the ABC/IAP activity. ABC Modeling and Impact Workshop, Seoul, South Korea, September 2011
  48. Goto D., Oshima N., Nakajima T., Takemura T. (2011) A modeling study of black carbon aerosol using a global aerosol model with parameterized aging processes. 2011 XXV International Union of Geodesy and Geophysics (IUGG) General Assembly, Melbourne, Australia, July 2011
  49. Goto D., Sudo K., Seiki T., Nakajima T., Satoh M., Tomita H., Takemura T., Suzuki K. (2011) Development of an unified chemistry-aerosol model coupled to a global cloud resolving model: perspective and interim report. First International SALSA Workshop 2011, Kashiwa, Japan, March 2011
  50. Goto D., Nakajima T., Takemura T. (2010) A modeling study of ammonium-sulfate-nitrate aerosols in terms of radiative forcings. 2010 American Geophysical Union (AGU) Fall Meeting, San Francisco, USA, December 2010
  51. Goto D., Nakajima T., Takemura T. (2010) Uncertainty of simulated aerosol optical properties derived from mixing states of black carbon in Asia. The 3rd Asian-Pacific Radiation Symposium (APRS2010), Seoul, South Korea, August 2010
  52. Goto D., Nakajima T., Takemura T. (2010) Implementation of BC aging process into SPRINTARS. Radiation, Cloud, Aerosols, and Climate workshop (in celebration of 60th birthday of Prof. Terry Nakajima), Sendai, Japan, August 2010
  53. Goto D., Nakajima T., Takemura T. (2010) Evaluation of the anthropogenic sulfate direct radiative forcings in a general circulation model. The 13th conference on atmospheric radiation by American Meteorological Society (AMS), Portland, USA, June 2010
  54. Goto D., Nakajima T., Takemura T. (2010) Radiative impact of ammonium-sulfate-nitrate aerosols in a general circulation model. The 13th conference on atmospheric radiation by American Meteorological Society (AMS), Portland, USA, June 2010
  55. Goto D., Nakajima T., Schutgens N.A.J., Takemura T. (2010) Uncertainty of simulated aerosol optical properties derived from prescribed optical parameters in Asian region. Japan Geoscience Union Meeting 2010, Makuhari, Japan, May 2010
  56. Goto D., Nakajima T., Takemura T. (2008) Impacts of marine organic aerosols on marine aerosol and cloud fields. 2008 International Global Atmospheric Chemistry (IGAC) Science Conference, Annecy, France, September 2008
  57. Goto D., Nakajima T., Takemura T., Higurashi A., Nakajima T. Y. (2008) A comparison of correlation between aerosols and low-level clouds using a GCM and satellites measurements (MODIS and GLI) in the region of 40S-60S. International Radiation Symposium 2008, Iguazu, Brazil, August 2008
  58. Goto D., Nakajima T., Takemura T. (2008) An evaluation of AGCM for marine aerosols in the region of 40S-60S. University Allied Workshop 2008, Maihama, Japan, July 2008
  59. Goto D., Takemura T., Nakajima T. (2007) Impact of aerosol competition effects on global cloud field using a general circulation model. 2007 XXIV International Union of Geodesy and Geophysics (IUGG) General Assembly, Perugia, Italy, July 2007
  60. Goto D., Takemura T., Schutgens N., Tsuruta H., Nakajima T. (2007) Can a change of single scattering albedo in Amami-Oshima in a low pressure condition be explained by GCM simulations? University Allied Workshop 2007, Beijing, China, June 2007
  61. Goto D., Takemura T., Nakajima T. (2006) Importance of secondary organic aerosol in estimating aerosol indirect effect. The 2nd Asian-Pacific Radiation Symposium (APRS2006), Kanazawa, Japan, August 2006
  62. Goto D., Takemura T., Nakajima T. (2006) A modeling study of secondary organic aerosol using a general circulation model. The 12th conference on atmospheric radiation by American Meteorological Society (AMS), Madison, Wisconsin, USA, July 2006

  

3.5km aerosol simulation of aerosol optical thickness for carbon (red), sulfate (green), mineral dust (yellow) and sea salt (blue) with NICAM-Chem on the K computer@RIKEN. The calculation was performed by Dr. Yousuke Sato (Sato et al., Sci Rep. 2016).
Copyright(c) NICAM-Chem Developer Team. All rights reserved.

Refinement of secondary components of PM 2.5 by spatially seamless air pollutant transport model

MEXT-J/Grant-in-Aid for Young Scientists (A): PI (FY2017-2019)
We are simulating PM2.5 over east Asia using NICAM-Chem, especially focusing on secondary aerosols.

Improvement of Assessment Methods for Atmospheric Behavior of Hazardous Materials by Comprehensively Analyzing Nuclear Accident Data

MOE-J/1-1802: CI (FY2018-2020)
We are improving a simulation of the radioactive tracers using a regional transport model.

Active evaluation of SLCP impacts and seeking the optimal pathway

MOE-J/S-12: CI (FY2014-2018)
We are developing global NICAM-Chem using K supercomputer with high-resolved grid spacing. Using the NICAM-Chem model, we are simulating their impacts on environments and climate using realistically future scenario based on AIM model.

Past major projects

  • Improvement of PM2.5 simulations through global-to-regional hybrid material transport model (MEXT-J/Grant-in-Aid for Young Scientists B) : PI (FY2014-2016)
  • Understanding of atmospheric transport modeling of fallout radionuclides and migration processes (MEXT-J/Grant-in-Aid for Scientific Research on Innovative Areas) : CI (FY2012-2016)
  • Development of Seamless Chemical Assimilation System and Its Application for Atmospheric Environmental Materials (MEXT-J/RECCA) : FY2010-2014

Development of prototype for next generation air pollution forecasting system

NIES : PI(FY2018)
We develop the prototype for next generation air pollution forecasting system.

Health and Environmental Safety Research Program by Issue-Oriented Research Program

PJ6 (Research project on atmospheric processes, toxicity, and health effects of air pollutants, including PM2.5): CI(FY2016-2020)
We simulate air pollutants in various atmospheric transport models.

Past projects

  • A study of air pollutions with high resolution using a global cloud-resolving model CRER: PI(FYH2014)
  • Model intercomparison of chemical transport models using integrated measurements over Asia CRER: PI(FYH2012)
  • East Asian Environment Research Program NIES: CI(FYH2011-2015)